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INFRARED SPECTROSCOPY OF CONJUGATED 

ORGANIC MOLECULES UNDER HIGH PRESSURE 

 

Abstract 
 

By Kirill Khamidovich Zhuravlev, Ph.D. 

Washington State University 

May 2004 

 

Chair: M. D. McCluskey 

 Conjugated organic molecules are important components in solid-state 

optoelectronic devices and laser dyes. Changes in the conformations of these 

molecules affect the optical emission wavelengths. In order to probe the conformation 

of conjugated molecules, infrared (IR) spectroscopy was performed on organic solids 

under high hydrostatic pressures. 

We investigated polyphenyl molecules, such as biphenyl, p-terphenyl, and p-

quaterphenyl. It was shown that polyphenyl molecules experience a phase transition 

in which molecules change their conformation from a twisted to a planar structure. 

This transition manifests itself in dramatic changes in the IR spectra. Beyond a 

critical pressure, specific IR-active modes abruptly become IR-inactive. 

IR spectra have been obtained with a Bomem DA8 Fourier-Transform IR 

spectrometer in the 500-5000 cm-1 spectral range. Those spectra clearly showed that 

when the pressure increases above the critical value some IR-peaks completely 
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disappear from the spectrum. The critical pressure was found to range from 0.2 GPa 

for biphenyl to 0.9 GPa for p-quaterphenyl molecule. 

 Numerical analysis of conjugated molecules has been done using ab initio 

calculations. Using the local density approximation, calculations of molecular 

structure, vibrational frequencies, and IR intensities were performed. The results of 

these numerical simulations confirmed the experimental observations and allowed us 

to resolve a controversy about the p-terphenyl structure in the twisted conformation. 

They also demonstrated that high-pressure IR spectroscopy can be a very sensitive 

tool in probing molecular structure. 

 In order to investigate the effect of pressure, as dimensions approach the 

nano-scale, IR spectroscopy was performed on nm-thick organic films. The special 

technique called surface-enhanced infrared absorption spectroscopy (SEIRA) has 

been applied to the investigation of a thin film (30 nm) of p-nitrothiophenol under 

high pressure. The phenomenon of absorption enhancement in the presence of thin 

metal film has been used to obtain the absorption spectra of thin layer of p-

nitrothiophenol.  
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1. Objectives of this work 

 

 The application of high pressure is widely used in physical experiments to study 

the properties of condensed-matter systems. It is known that pressure can change solid-

state structures and induce various phase transitions in materials. Novel structures can be 

synthesized using high pressure, which are important for both technological applications 

and fundamental research. 

 The objective of this work was to investigate the behavior of organic solids under 

high hydrostatic pressure. Among all organic solids we chose conjugated molecules, 

which have wide applications in organic light-emitting devices and laser dyes. Those 

molecules are known to undergo phase transitions when either temperature or pressure 

rises above critical values. 

 Specific objectives included studying the optical properties of polyphenyl 

(biphenyl, p-terphenyl, and p-quaterphenyl) solids, numerical simulations of molecular 

structures, and investigation of thin films of p-nitrothiophenol (p-NTP), when the solid 

becomes quasi-two-dimensional. We obtained infrared (IR) spectra of those solids and 

thin films using Fourier-transform infrared spectrometry and we used diamond-anvil cells 

to generate high pressures up to 10 GPa. By obtaining the vibrational spectra as a 

function of pressure, phase transitions were observed. 

 An essential part of this work was the comparison between the calculations and 

the experimental data. Toward that end, we performed ab initio calculations of molecular 

structure and vibrational properties of the molecules under investigation and compared 

those results with experiment. In the case of biphenyl, for which the structure is well 
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known, the comparison between theory and experiment provided a validation of our 

approach. For p-terphenyl, the combined theoretical and experimental techniques yielded 

information about its molecular structure. 

 

2. Organization of thesis 

 

 Section 3 reviews the theory behind phase transitions and models for quantum 

chemistry. Hartree-Fock, Thomas-Fermi, and density-functional theory are considered for 

modeling molecular structures. The basics of numerical calculations are presented. 

Landau theory and scaling hypotheses, along with the notion of imcommensurate phases, 

are described. 

 Section 4 reviews applications and methods of investigation of organic solids, 

along with some results on polyphenyl molecules. 

 Section 5 describes the high-pressure apparatus and Fourier-Transform IR (FT-

IR) spectroscopy technique. Some attention is given to in situ pressure measurements, 

infrared detectors, and comparative advantages of FT-IR with respect to grating 

spectrometers. 

 Section 6 shows the results obtained in this work on polyphenyl solids and a thin 

film of p-NTP. Experimental observations are supported by subsequent numerical 

simulations. Using a combined experimental and computational approach, the 

controversy about the structure of low-pressure phase of p-terphenyl is resolved. Extra 

emphasis is given to surface-enhanced infrared and Raman techniques. Surface-enhanced 

IR absorption (SEIRA) was successfully applied to the study of a p-NTP thin film.  
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3. Theoretical background 

 

 In this section, theoretical issues pertaining to quantum chemistry, group theory, 

and phase transitions are discussed. Ab initio calculation techniques and density 

functional theory (DFT), using the local density approximation, are described. These 

calculations are essential to interpret the experimental results, as discussed in Sec. 6. As it 

will be discussed in that Section, we observed second-order phase transitions under high 

pressure. The theory of phase transitions will therefore be reviewed here. Moreover, it is 

known that biphenyl has two types of low-pressure phases and those phases are 

incommensurate. Although our experimental technique is not sensitive to the transition 

between two incommensurate phases, for the sake of completeness, the theoretical 

background behind incommensurability in solids is reviewed in this Section. 

 

3.1 Methods of quantum chemistry. 

 

3.1.1. Self-consistent field theory. 

 

 In 1926 E. Schroedinger introduced his famous equation1, which has become the 

cornerstone of nonrelativistic quantum mechanics. The Schroedinger equation determines 

the energies of a quantum system and the corresponding wavefunctions: 

Ψ=Ψ EH
)

       (1) 

where H
)

 is the Hamiltonian operator, E is the energy, and Ψ is the wavefunction. 

Though it looks very simple, this equation is extremely difficult to solve for all but a very 
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limited number of cases. In general, it is necessary to use approximations that enable one 

to derive solutions to the Schroedinger equation. 

 In the general case, the Hamiltonian operator for an atom is given by: 

∑∑
≠ −

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∆−=

ji jii i
i rr

1
2
1

r
Z

2
1H rr

)
,    (2) 

where atomic units are used throughout this chapter, Z is the charge of the atomic 

nucleus, and  is the radius-vector of the iir
r th electron. The first two terms describe the 

kinetic and potential energy of electrons in the field of the atomic nucleus, whereas the 

last term describes the electron-electron interaction. It is this term that makes the equation 

so hard to solve. Only the hydrogen atom can be solved exactly using the Schroedinger 

equation—even for the helium atom one must use some approximations. The first 

successful approach to solve the problem of atomic structure was made by Hartree2. The 

Hartree method was later extended by Fock3 to take into account the Pauli exclusion 

principle. 

 The Hartree approach is based on the variational principle, which states that for 

the true ground-state wavefunction, the energy of the system is at its minimum. Thus 

from the variational principle one can write for an arbitrary wavefunction , such that Ψ

12 =Ψ , that the following inequality holds: 

ΨΨ≤ ĤE0 ,      (3) 

where E0 is the ground-state energy. The equality occurs only for the true ground-state 

wavefunction. Thus we can take a wavefunction, substitute it in (1), and find the 

minimum with respect to wavefunction variation Ψδ . This procedure results in the 

following equation: 
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0EĤ =ΨδΨ−ΨδΨ   .   (4) 

Since Eq. (4) must be true for any arbitrary variation in wavefunction, one can write 

0EĤ =Ψ−Ψ    .   (5) 

 In the Hartree method the wavefunction, which is the trial solution of Eq. (1), is 

written as the product of one-electron wavefuctions: 

)r()r()r( NN2211
rrr

ψ⋅⋅⋅ψψ=Ψ   ,   (6) 

where N is the number of electrons. Let us take the helium atom as an example4. For the 

ground state we choose: 

2eff1eff rZ
3
effrZ

3
eff

21 eZeZ)r,r( −−

ππ
=ψ

rr  ,   (7) 

where Zeff is the effective charge of the atomic nucleus due to screening by the electrons. 

Substituting Eq. (7) into Eq. (1) yields the energy as a function of Zeff. Minimizing that 

expression with respect to Zeff yields the value of the effective charge Zeff and the ground-

state energy E. For the helium atom, the ground-state energy is given by: 

effeff
2
eff Z

8
5ZZ2ZE +−=   .   (8) 

The minimum occurs at Zeff=Z-5/16, which yields E=-2.85 a.u. (the experimental value is 

-2.90). 

 The Hartree method does not take into account the exchange interaction between 

electrons. This interaction is a result of the Pauli exclusion principle, which states that no 

two fermions (e.g., electrons) can occupy the same quantum state. The Pauli principle is 

accounted for in the Hartree-Fock (HF) approximation. This approach uses multielectron 

wavefunctions in the form of a so-called Slater determinant: 
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),r(),r(

),r(
),r(),r(),r(

!N
1

NNN11N

112

NN1221111

σψ⋅⋅⋅σψ
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅σψ

σψ⋅⋅σψσψ

=Ψ

rr

r

rrr

, (9) 

where  denotes the spin variable of the iiσ th electron. This wavefunction is constructed to 

satisfy the Pauli principle. The HF method often gives very good results for atomic 

ground-state energies. 

 Unfortunately, self-consistent HF equations also require much computational 

effort to be solved, especially in the case of heavy atoms. In this case, there is another 

approach that yields atomic parameters with fairly good accuracy. It is called the 

Thomas-Fermi model. 

 

3.1.2. Thomas-Fermi theory. 

 

 For heavy atoms one can use a quasiclassical approach and think of electrons as a 

“gas” with a number density )r(n
r

. The density of the electron gas is related to its Fermi 

wave vector by4: 

2

3
F

3
pn
π

= .       (10) 

In an electrostatic field, the energy of an electron can be represented as 

ϕ−=
2

pE
2

 ,      (11) 

where ϕ is the potential. It is clear that E must be less than zero, otherwise the electron 

would not be bound. Therefore one can write: 
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0

2
F

2
p

ϕ−ϕ=  ,      (12) 

where  is the maximum value of electron total energy. Substituting Eq. (12) into Eq. 

(10) yields: 

0ϕ−

( )[ ] 2
3

02 2
3

1n ϕ−ϕ
π

=   .    (13) 

For a neutral atom, n=0 at the atom’s boundary. From Gauss’s Law,  outside any 

centrosymmetric charge distribution. Hence, it follows that 

0=ϕ

00 =ϕ . From the Poisson 

equation, , we obtain the following equation: n4π=ϕ∆

2
3

3
28

ϕ
π

=ϕ∆  .      (14) 

This is the central equation in the Thomas-Fermi theory. It is valid only at distances 

which satisfy the following criteria: 

1rZ
1 <<  .      (15) 

Therefore, Thomas-Fermi theory works well only for heavy atoms, where Z is 

sufficiently large. 

 

3.1.3. Density-functional theory. 

 

 Density-functional theory (DFT) unites the Hartree-Fock method and Thomas-

Fermi theory. It has proved to be a very powerful tool for ab initio calculations. 

 In 1964 Hohenberg and Kohn5 proved that the ground state density of a system of 

electrons uniquely determines the external potential which acts upon these electrons. A 
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proof by contradiction is outlined here. Suppose we have two distinct potentials )r(v
r

 and 

)r(v
r′ , such that const)r()r(v ≠v′−

rr
. If we assume that both potentials give rise to the 

same electron density )r(n
r

, then we can write, using the minimum property of the ground 

state Ψ : 

( ) ( ) ( ) ( ) ( )( )rvrvrnErvrv ′−+′=Ψ′′−Ψ′

HHHE
rrrrr
+Ψ′′Ψ′=Ψ′Ψ′<ΨΨ=

 ,  (16) 

H′ . where Ψ′  is the ground state wavefunction for Hamiltonian 

Analogously we can obtain: 

( ) ( ) ( ) ( ) ( )( vrvrnErvrv −′+=Ψ−′Ψ

By adding Eq. (16) and Eq. (17), it follows that EEE

)r

HHHE
rrrrr

+ΨΨ=Ψ′Ψ<Ψ′′Ψ′=′
 .  (17) 

E<′+ +′ , which is impossible. 

This pr

he electrons in an external potential 

oves the central theorem of density functional theory.  

For t )r(v
r

 the ground state energy can be 

written as6,7

[ ]nGrdrd
rr2 ′−

)r(n)r(n1rd)r(n)r(vE +′
′

+= ∫∫
rr

rr

rr
rrr   , (18) 

where G is a functional of density

  (19) 

Then, using the fact that δ∫

, the exact form of which is unknown: 

[ ] [ ] [ ]nEnTnG xcs +≡    , 

where [ ]nExc  is the exchange-correlation functional. 

rd)r(n
rr

0= , one can obtain the following system of equations: 

rd)r(v)r( rr
)r(n rrr
rr

r

′+=ϕ ∫ ′−
′      (20) 
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[ ]
)r(n)r(n~xcxc )r(n~d/))r(n~E(d)n( rr

rr
=

≡µ     (21) 

[ ] )r()r())r(n()r(
2
1

iiixc
2 rrrr

ψε=ψ
⎭
⎬
⎫

⎩
⎨
⎧ µ+ϕ+∇−   (22) 

∑ ψ= 2
i )r()r(n rr

      (23) 
=

N

1i

The system (20)-(23) must be solved self-consistently. The energy is given by: 

[ ] ∫ µ−+ d))r(n()r(n)r(nE xcxc
rrr

It is necessary to emphasize that the energies 

∫∫∑ ′−ε= ′−
′

=

r

rdrd
2
1E rr

)r(n)r(n
N

1i
i

r

rr
rr

rr

    (24) 

iε  and wavefunctions )r(
r

ψ  do not have 

any physical meaning by themselves. Only the 

i

electron density [Eq. (23)] and the energy 

. of the system [Eq. (24)] have physical meaning6,7

 Since the exact form of the functional ( ))r(nE xc
r  is unknown, an approximate 

form must be used. Since the introduction of DFT, several approximations have been 

developed. The most prominent and famous is the local density approximation (LDA), 

which represents the exchange-correlation functional as: 

[ ] ( )( ) ( ) rdrnrneEnE xc
LDA
xcxc

rrr
∫=≈     (25) 

where )n(exc  is the exchange-correlation energy per particle in a uniform electron gas7. 

 This approximation in many cases turns out to work very well for determining 

molecular structures. It also gives fairly good accuracy for ionization energies of atoms 

and dissociation energies of molecules. Nevertheless, it fails in determining band gaps in 

solids, heavy fermion systems, and other systems with strong electron-electron 

interactions. 
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3.1.4. Molecular structure determination. 

 

 When two or more atoms come close together, their electronic clouds overlap and, 

in certain cases, form a bond between the atoms. The Hamiltonian for this system 

includes terms describing the interaction of nuclei with each other, as well as electrons 

with not only their parent nuclei but also with all other nuclei in the molecule. 

( )

∑∑∑∑

∑∑

≠= =≠ −−− ji ji

N

1i

M

1j ji

i

ji ji

ji 1
2
1ZZZ

2
1

rrrRR

==

+−

+∆−∆−=
M

1i

N

1i i
M1N1 2

1
M2
1,,;,,Ĥ

ii

R

rrRR rR

rrrrrr

r
K

rr
K

r
rr

ber of electrons; N is the number of nuclei; Zi is the charge and  

i is t

 (26) 

Here M is the total num

M he mass of the ith nucleus; iR
r

 and jrr  are radius-vectors of the ith nucleus and jth 

electron, respectively. 

 We can significantly simplify the operator in Eq. (26), using the fact that the mass 

of a nucleus is over a thousand times larger than the mass of an electron. Thus one can 

neglect the kinetic energy of the nuclei, which is the first term in Eq. (26). All the nuclei 

are assumed to be fixed in space, and the potential energy of their interaction with each 

other is just an additive constant to the Hamiltonian, which can be added to the total 

energy of the system. The Hamiltonian of the system is then given by: 

( )

∑

∑∑∑

≠ −ji ji

1
2
1

rr

= ==

+

−
−∆−=

N

1i

M

1j ji

i
M

1i
M1N1

Z
2
1,,;,,Ĥ

i rR
rrRR r

rr

rr
r

K
rr

K
r

r

Hamiltonian operator for the electronic coordinates only. The solution to the 

 (27) 

This approximation is called the Born-Oppenheimer approximation. We are left with a 
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corresponding s theSchroedinger equation yield  electronic wavefunction, 

{ }( )iM1 ;,, Rrr
rr

K
r

Ψ , and the energy of the system, { }( )iE R
r

, which depend parametrically 

on the internuclear distances. The minimum of the energy with respect to the variation of 

internuclear distances determines a possible stable structure of the molecule, and the 

global minimum corresponds to the ground-state energy of the molecule. The nuclear 

sidered as if all the nuclei moved in the potential 

( ) { }( )iN1 E,,U RRR =K . Energy levels for such a potential correspond to vibrational 

levels of the mole

motion is then con

cule. A discussion of molecular vibrations will be given in the 

llowing sections. 

 

3.1.5. Group theory. 

n, defined on this set such that all the elements of the set obey the following 

postulates8: 

1. two elements, a and b from A, the element c=ab belongs to 

3. t e in A, such that ae=ea=a. This element is called 

4. alled a-1, such that aa-1=a-1a=e. 

fo

 

 The set of elements A is called a group if there is an operation, which we will call 

multiplicatio

For every 

the set A. 

2. The associative law of multiplication holds: abc=(ab)c=a(bc). 

There is an elemen

the unity element. 

For every a in A, there is an element, c

This element is called the inverse of a. 
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The multiplication operation does not necessarily mean ordinary multiplication. It 

can be a combination of operations; for example, two differentiations. Examples of 

groups include the set of all integers with respect to addition, the set of all rational 

umbern s with respect to ordinary multiplication, and the set of n×n invertible matrices 

with respect to matrix multiplication. 

 The importance of group theory to physics and chemistry is hard to overestimate. 

Applying group-theoretical analysis, one can determine the vibrations that give rise to 

infrared (IR) active modes and Raman active modes in the molecular spectra, determine 

the degeneracy of molecular energy levels, and so on. 

 When dealing with a particular molecule, one can perform a number of operations 

on it; namely, rotation about given axis, reflection about a given plane, inversion, or a 

combination of rotation and inversion. It is clear that only rotations by the angle n
2π , 

where n is an integer, form a group of rotations*. The axis of rotation is called the axis of 

nth order and is denoted as Cn. If the symmetry operations involve a rotation plus 

inversion operation, then the axis is denoted as Sn. The main axis of rotation is the axis of 

the highest order. The plane of reflection is marked as σ and is given the subscript v or h, 

depending on whether the plane contains the main axis of rotation or is perpendicular to 

it, resp

                                                

ectively. Thus if the plane contains the main axis, it is σv, and if the plane is 

perpendicular to it, it is the σh plane. The inversion operation is denoted by the symbol i.  

 
* If electrons are considered, the rotations by n

4π  form a group of rotations, due to electron spin. 
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It is straightforward cribed above leave at least 

ne point of the molecule unmoved in space. Therefore such a group of operations is 

called a point group. In the following sections, several specific examples are described. 

 to verify that all the operations des

o

 

3.1.6. Examples of point groups. 

 

Water. 

 

 The wa   

105°. The oper o

• ugh the oxygen atom and bisecting 

 

and containing the axis of rotation. 

The point group to which the wa is C2v, because it has the axis of 

rotation of the second order and two planes f reflection that contain this axis, which is 

 peroxide.

ter molecule (H2O) is a planar molecule, with the H-O-H angle equal to

ati ns that leave the molecule unchanged are: 

Rotation about the axis passing thro

the H-O-H angle by 180°; 

• Reflection about the plane containing this axis and the molecule itself; 

• Reflection about the plane, perpendicular to the plane of the molecule

ter molecule belongs 

 o

designated by the subscript v in the name of the group. The molecule is shown in Fig. 1. 

 

Hydrogen  

 The hydrogen peroxide molecule (H2O2) in the cis-form belongs to the C2v point 

group as well. I t

 

n i s trans-form it has the following symmetry elements: 
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• The center of inversion; 

• The axis of rotation of the second order, which is perpendicular to the 

molecule plane; 

• The plane of reflection that coincides with the plane of the molecule. 

Because the plane of reflection is perp o the main axis of rotation, the point 

group of this molecule is C2h. Again, the subscript h denotes the fact that the main axis 

 

endicular t

and the plane of symmetry are orthogonal. The molecule is shown in Fig. 2. 

Benzene. 

 

 The be n

• lar to the molecule plane; 

• 

• 6 axes of rotation of the second order, which are the lines of 

intersection of the plane of the molecule and 6 planes of reflection. 

ecause of these second-order rotational axes, the group is labeled by the symbol D. 

Finally, the point group of the benzene molecule is D6h. The molecule is shown in Fig. 3. 

 

 

 

nze e molecule (C6H6) has the following symmetry elements: 

The main axis of 6th order, perpendicu

• The plane of reflection, which coincides with the molecule plane; 

The center of inversion; 

• 6 planes of reflection containing the main axis of symmetry and being 

perpendicular to the molecule plane; 

B
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Figure 1. Water molecule. 

 

Figure 2. Hydrogen peroxide molecule. 

 

Figure 3. Benzene molecule. 
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3.1.7. Mathematical background. 

 

 In order to describe a symmetry operation, denoted as R , we can use the 

coordinate system in real space and represent any operation as a transfo ation of the 

radius-vector r

rm
r

. It is well known that the transformation of any vector into another vector 

can be perfo d by a matrix T. Every symmetry operation can therefore be described by r

a matrix, reducing the grou es is 

of matrices can be obtained from another 

me

p theory to the algebra of matrices. Such a set of matric

said to form a representation of the group. We will use the symbol Γ  to denote a 

particular representation. There are many possible representati  ons of the group. If one set

{ }B { }A by the rule 

ch that for any matrix from the set 

{ } { }QAQB 1−=  ,     (28) 

then these two representations are said to be equivalent. Equation (28) states that there is 

an invertible matrix Q su { }A  there is a matrix in the 

t 

lar representation is called the character of the representation. 

s of a point group, characters form a table of 

characters, which completely describes the group. The Great Orthogonality Theorem 

se  that can be obtained by a unitary transformation. If the matrices of the given 

representation can be simultaneously broken into block-diagonal form, the representation 

is called reducible. Otherwise it is called irreducible, and these are the representations 

that are of interest to us. 

 The trace of a matrix of a given operation is called the character of this operation. 

It is denoted by the symbol χ, so that χ(R) is the character of the operation R. The set of 

all characters for a particu

{ }B

In the case of irreducible representation
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holds f uc le 

can be lsewh

heorem: 

If  and 

or s h a tab of characters. We provide its formulation without proof here, which 

found e ere8. 

 Great Orthogonality T

µΓ νΓ  are two non-equivalent irr

 and   of dimensions  and  respectively, then the matrix elements 

are related by the equation 

educible representations with matrices 

)(D Rµ )(D Rν
µn νn ,

( ) kmijmjik µνµ
R

where g is the order of the group and the sum is over

1 ng)(D)(D δδδ=−νµ∑ RR    (29) 

 all the operations R. With the help 

of this theorem, it is possible to expa le representation into a sum of 

irreducible re ext section it 

is used to solve the problem of molecular vibrations. 

ts. Some of these displacements, however, will involve motion in which no 

bond length or bond angle changes. Those displacements correspond to translation along, 

and rotation about, three non-coplanar axes. The Hamiltonian of the system can be 

nd any reducib

presentations. This theorem has many applications, and in the n

  

3.1.8. Application of group theory to molecular vibrations. 

 

 For a molecule consisting of N atoms, there are 3N possible atomic 

displacemen

written as: 

( ) ( )N321

N3

1i i

2
i

N321 x,,x,xW
M2
px,,x,xH KK += ∑

=

 , (30) 

where W is the potential energy of the N nuclei. The potential can be expanded around 

the equilibrium as follows: 
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( )

( ) ( )( ) L+−−
∂

K

∂
∂

+−
∂
∂

+=

∑ ∑∑0

N3 N3 N3

ii

0N321

2
1xx

x
W

Wx,,x,xW

= = =
00 jjii

1i 1i 1j ji

2

i

xxxx
xx

W  (31) 

The constant factor W0 can be set to zero. In addition, at equilibrium, all first derivatives 

vanish. Thus we obtain the Hamiltonian: 

( )

( )( ) L
= =1i 1j ji

N3 2
ip

 (32) 

Restricting the expansion to the quadratic terms, we obtain the harmonic approximation. 

Second derivatives of the potential energy are called harm acing 

 by qi, displacement from equilibrium for the ith coordinate, yields: 

K

+−−
∂∂

∂

+=

∑∑

∑
=

N3

jjii

N3 2

1i i
N321

00
xxxx

xx
W

2
1

M2
x,,x,xW

onic force constants. Repl

0ii xx −

( ) ∑∑∑
= ==

+=
N3

1i

N3

1j
jiij

N3

1i i

2
i

N321 qqB
2
1

M2
pq,,q,qH K  , (33) 

where
ji

2

ij xx
WB
∂∂

∂
=

diagonalizes the ma

. One can find a linear transformation of coordinates qi that 

trix ijB . The Hamiltonian is then expressed as: 

( ) ∑∑ ξ+=ξξξ
N3

2
ii

N3 2
i

N321 k1p,,,H K  ,  (34) 
== 1i1i i 2M2

where ξi are the new coordinates, called normal coordinates. The coefficients ki are 

ordinary force constants for the harmonic oscillator. Since six modes correspond to 

translational and rotational motion, exactly six coefficients ki will be equal to zero. 

Excluding those coefficients from consideration, we r the can write the Hamiltonian fo

vibrational problem: 
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( ) ∑∑
6N3

1i

2
6N3

1i i

2
i k

2
1

M2
pH

−

=

−

=

ξ+=ξξξ ,,,    (35) 

 Since any symmetry operation leaves the molecule unchanged, th

ii6N321 −K

e Hamiltonian is 

reserved under symmetry operations. It is known that every normal coordinate belongs 

to an irreducible representation of  corresponding harmonic-oscillator 

wavefunctions (1st excited state) belong to the same representation. A group-theoretical 

alysi

Exam

p

the group. The

an s is used to determine the modes which are IR- or Raman active. 

 

ple: H2O. 

 ter molecule. It belongs to the C2v point group. 

The table of characters is given as follows8: 

C v σ σ

 

As an example, consider the wa

2 E C2(z) xz yz

A1 1 1 1 1 

A2 1 1 -1 -1 

B1 1 -1 1 -1 

B2 1 -1 -1 1 

siteΓ  3 1 1 3 

R
rΓ  3 -1 1 1 

N3Γ  9 -1 1 3 

 

take the direct product of two representations: for the radius-vector 

In order to obtain the representation for 3N atomic displacements, Γ , we must N3

R
r

, R
rΓ , and for the 
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atomic sites siteΓ . The representation for the radius-vector is, in turn, the direct product of 

the representations of x-, y-, and z-components. In our case these are A2, B1, and B2 

representations. The character of a given transformation for the siteΓ  representation is 

equal to the nu that remain stationary under this transformation. The results mber of atoms 

for two representations (radius-vector and sites) are listed in table of characters. The last 

line represents the characters for the represen  the tation with atomic displacements as

basis, where siteN3 Γ⊗Γ=Γ R
r . Using the Great Orthogonality Theorem we can expand 

N3Γ : 

B3B2AA3 21N3 21 ⊕⊕⊕=Γ     (36) 

As was mentioned before, there are six modes which are rotational or translational 

modes. We must exclude tho 1, B1, 

2

r mode. In addition there is 

1

2

se from Eq. (36). Three translations correspond to A

and B  representations respectively. Three rotations correspond to A2, B1, and B2 

representations. Subtracting those six modes from Eq. (36) yields: 

21N3 BA2 ⊕=Γ       (37) 

Considering the water molecule qualitatively, there are symmetric modes, with 

hydrogen atoms moving along the O-H bonds for one mode and with H-O-H angle 

oscillating around its equilibrium value (Fig. 4) for the othe

one asymmetric mode, where the hydrogen atoms move along the bonds, out of phase 

with the oxygen atom (Fig. 4). The two symmetric modes belong to the A  representation 

and the asymmetric one belongs to the B  representation. 

 Now we may ask the question: which modes are IR-active and which are not? IR-

activity means that if we shine light onto the system, the mode absorbs energy and 

becomes excited. The transmitted light intensity at the frequency corresponding to this 

 20



mode decreases. For a mode to be IR-active, it must have a nonzero dipole moment 

induced (Appendix A). For the water molecule, the answer is evident from Figure 1. The 

two symmetric modes produce a dipole moment along the z-axis (which is also the main 

be used to unambiguously determine the IR activity of 

vibrational modes. In order for the m

probability for the transition from the ground state to this particular excited state. The 

transition rate is given by: 

axis of symmetry), and the asymmetric mode produces a dipole moment in the plane of 

the molecule perpendicular to the main axis. Thus, for the water molecule, all three 

modes should be IR-active. In fact, it is known from experiments that this is the case. 

 Group theory can 

ode to become excited, there must be a nonzero 

2

a0a0 dP ∫ ττψτψ∝ )()( d
r

 ,    (38) 

here w 0ψ  and aψ  are wavefunctions of the ground state and the excited state, 

respectively, and d  is the dipole moment. The set of all arguments, on which the 

wavefunctions depend, is labeled 

r

τ . 

 The integral in Eq. (38) will be zero if the integrand is an odd function. The 

wavefunction of the ground sta  always belongs to the totally symmte etric representation 

(A1 in the case of the water molecule). Thus integral in (38) is zero unless  belongs to 

e 

aψ

the sam representation as the dipole moment. The dipole moment has the same 

symmetry as the radius-vector R
r

. In the case of the water molecule,  

211 BBA ⊕⊕=ΓR
r  

Hence,  must belong to the A1, B1, or B2 representation. From Eq. (37), it is apparent 

that all three modes are IR-active. 

aψ
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Symmetric stretch mode 

 

Symmetric wagging mode 

 

Asymmetric stretch mode 

Figure 4. Vibrational normal modes of the water molecule. 
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3.2. Numerical calculations. 

 

As it was seen in the previous sections, in order to determine a molecular 

structure we must solve the Schroedinger equation with a Hamiltonian given by Eq. (27). 

The computational resources required to solve this equation grow rapidly with the 

number of electrons. In order to apply any of the available numerical methods, we must 

limit the number of electrons taken into account. It is known that usually only the outer 

electrons are involved in bond formation. To first order, the inner-shell electrons can be 

ignored. This approximation greatly reduces the number of basis wavefunctions involved 

in the calculation. 

In any numerical method of solving the Schroedinger equation, the one-electron 

wavefunctions are expanded in terms of certain basis functions, which are usually chosen 

to be orthonormal. This significantly reduces the computational cost of solving all the 

equations. 

Currently there are commercially available software packages which perform the 

task of calculating molecular structures. In this work, the Gaussian98 program (Ref. 9) 

has been used. It has many built-in methods, including Hartree-Fock and DFT, and uses a 

variety of basis sets. All the basis sets include Gaussian-type functions; i.e., functions that 

look like9: 

( ) 2rlmn zycxg α−=α e,rr  ,    (39) 

where x, y, and z are components of the radius-vector r
r

 and c is the normalization 

constant. All such functions are normalized to unity: 
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1g
spaceall

2 =∫        (40) 

The list of different basis sets used by Gaussian program is given in Table I: 

 

Table I. Description of the basis sets used by GAUSSIAN program. 

# Basis Functions Basis set 
[Applicable atoms] 

 
Description 1st row 

atoms 
hydrogen 

atoms 
STO-3G 
[H-Xe] 

Minimal basis set: use for more 
qualitative results on very large systems. 5 1 

3-21G 
[H-Xe] 

Split valence: 2 sets of functions in the 
valence region provide a more accurate 

representation of orbitals. 
9 2 

6-31G(d), 6-31G* 
[H-Cl] 

Adds polarization functions to heavy 
atoms. (This basis set uses the 6-

component type d-functions.) 
15 2 

6-31G(d,p),  
6-31G** 
[H-Cl] 

Adds polarization functions to the 
hydrogens too. 15 5 

6-31+G(d) 
[H-Cl] 

Adds diffuse functions: important for 
systems with lone pairs, anions, excited 

states. 
19 2 

6-31+G(d,p) 
[H-Cl] 

Adds p-functions to hydrogens as well. 19 5 

6-311+G(d,p) 
[H-Br] 

Triple zeta: adds extra valence functions 
(3 sizes of s and p functions) to 6-

31+G(d).Diffuse functions can be added 
to the hydrogen atoms via a second +. 

22 6 

6-311+G(2d,p) 
[H-Br] 

Puts 2d functions on heavy atoms (plus 
diffuse functions), and 1p function on 

hydrogens. 
27 6 

6-311+G(2df,2p) 
[H-Br] 

Puts 2d functions and 1f function on 
heavy atoms (plus diffuse functions), and 

2p functions on the hydrogen atoms. 
34 9 

6-311+G(3df,2pd) 
[H-Br] 

Puts 3d functions and 1f function on 
heavy atoms, and 2p functions and 1d 

function on hydrogens, as well as diffuse 
functions on both. 

39 15 
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3.3. Theory of phase transitions. 

 

 In the present work, we observed second-order phase transitions in conjugated 

organic solids under high pressure. It is therefore necessary to discuss the theory behind 

those phenomena. It is also known that biphenyl has two low-pressure phases which are 

incommensurate. Although our experimental methods are not sensitive to 

incommensurate-incommensurate phase transitions, the issues related to incommensurate 

phases are briefly discussed.  

 

3.3.1 General properties of phase transitions. 

 

 When two or more macroscopically distinguishable substances are located in a 

given system, it is said that the system consists of several phases. Examples of such 

systems include ice-water (solid-liquid system), mercury-water (two immiscible liquids), 

and water-air (liquid-gas system) mixtures. In all multiphase systems, different phases are 

separated by interfaces such that they are macroscopically distinct. When a chemically 

homogeneous material melts, evaporates, or undergoes some other structural 

transformation, it is said to undergo a phase transition. 

 During any phase transition, the thermodynamic potential per unit volume 

remains continuous with variations in temperature and pressure. Therefore, the condition 

for the phase transition to occur is such that specific thermodynamic potentials of two 

phases,  and , are equal1Ψ 2Ψ 10: 

( ) ( TPTP 21 ,, Ψ=Ψ )     ,   (41) 
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where P is pressure and T is temperature. Eq. (41) determines not just one point but rather 

a phase-transition line on the P-T diagram. For each point on this line, the two phases are 

in equilibrium with each other and can coexist in the system. On the side where 21 Ψ>Ψ , 

phase 2 is more stable, and on the other side, phase 1 is more stable. 

 If there are more than two phases for a given substance, there is a possibility of 

the coexistence of more than two phases. In this case the following condition must be 

satisfied: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )TPTPTPTP

TPTPTPTP

1nn1n

3221

,,;,,
;;,,;,,

Ψ=ΨΨ=Ψ
Ψ=ΨΨ=Ψ

−

L
    (42) 

where n is the total number of phases. From this equation it is clearly seen that three 

phases can coexist only at one point on P-T diagram. This point is called the triple point. 

It is also evident that for more than three phases, Eq. (42) can be satisfied only by 

accident. This means that, in general, more than three phases of the same material cannot 

coexist simultaneously. 

As stated earlier, the specific thermodynamic potential for the material remains 

continuous throughout phase transformations. Its derivatives, however, can be 

discontinuous. Usually, phase transitions are divided into two types: first-order phase 

transitions and second-order phase transitions, depending on the properties of the first- 

and second-order derivatives of the thermodynamic potential. 
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3.3.2. First-order phase transitions. 

 

 In first-order phase transitions, the first derivatives of the thermodynamic 

potential  are discontinuous. From the definition of Ψ Ψ , it is known that s
T

−=
∂
Ψ∂  and 

v
P

=
∂
Ψ∂ , where s  and  are the specific entropy and volume, respectively. Thus, either 

the specific entropy or specific volume of the substance, or both, exhibits a discontinuity 

upon the phase transition. The change in specific entropy is associated with the latent 

heat of the phase transition. It is this heat that is required to melt ice or boil a teapot. 

From the expansion of  near the phase equilibrium, and condition (41), the 

following relationship can be derived: 

v

( TP,Ψ )

( )1212

12

vvT
q

vv
ss

dT
dP

−
=

−
−

=  ,     (43) 

where q is the heat required to transform phase 2 into phase 1. Eq. (43), known as the 

Clapeyron equation, defines the slope of the coexistence curve on the P-T diagram. 

 

3.3.3. Second-order phase transitions. 

 

 Another type of phase transition is characterized by discontinuities in the second-

order derivatives of the thermodynamic potential, while the first-order derivatives remain 

continuous. This means that during a second-order phase transition, the specific volume 

of the substance does not change, and no heat is added to or withdrawn from the system. 

At the same time, quantities such as the specific heat, bulk modulus, and thermal 
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expansion coefficient are discontinuous. Examples include the ferromagnetic-

paramagnetic phase transition, Bose-Einstein condensation, and the conductor-

superconductor transition. 

 In the case of ferromagnetic systems, such as iron or nickel, the material has a 

nonzero magnetic moment in the ferromagnetic phase. When the substance is heated 

above a certain temperature Tc, the magnetic moment becomes zero. This temperature is 

called the Curie temperature or critical temperature. The appearance of spontaneous 

magnetization below the critical temperature is the result of a second-order phase 

transition. 

 It is immediately evident that the paramagnetic phase and ferromagnetic phase 

possess different symmetries. In the paramagnetic phase, for an isotropic medium, the 

system is invariant under any rotation in space. In the ferromagnetic phase, the magnetic 

moment marks the preferred direction in space and the system is invariant only under 

rotations about this direction. The symmetry is therefore reduced. The phenomenon of 

symmetry reduction is a feature of all second-order phase transitions. In such a phase 

transition, the symmetry is said to be spontaneously broken. 

 Since one of the phases has lower symmetry, it requires more parameters to be 

described than the highly symmetric phase. The extra parameter that is necessary for such 

a description is called the order parameter. The order parameter is zero in the highly 

symmetric phase and becomes nonzero upon the phase transition. In the case of the 

ferromagnetic transition, it is magnetization that serves as the order parameter. The order 

parameter is measurable in the experiment and is the extensive thermodynamic variable. 
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Usually, the order parameter is associated with some intensive variable, which is 

conjugate to it. In the present example, the intensive variable is the magnetic field. 

 

3.3.4. Landau theory of second-order phase transitions. 

 

 During second-order phase transitions, the thermodynamic potential is a 

continuous function of the intensive variables and so are its first-order derivatives. In the 

low-symmetry phase, the order parameter is nonzero and becomes zero upon the phase 

transition. It is natural to assume that near the phase transition point, the order parameter 

is the only parameter that is important. The thermodynamic potential can be expanded in 

powers of the order parameter10,11: 

( ) LL +η∇++η+η+η+η−Ψ=ηΨ 24
2

3
1

2
00 2

caaaH   (44) 

where η is the order parameter and H is the conjugated field. The last term in Eq. (44) is 

added in order to take into account the spatial variations in the order parameter. The 

importance of this term will be clarified in the sections that follow.  

If the system properties are symmetric under reversal of η, then a1=0. It is also 

assumed that , wheretra 00 =
c

c

T
TT

t
−

= . Thus, in the absence of an external field, the 

thermodynamic potential above Tc has its minimum at η=0, whereas below the Tc there is 

a nontrivial value of the order parameter corresponding to the minimum in . Ψ

 Landau theory deals only with quantities that are of macroscopic nature. It also 

ignores all fluctuations. In the simplest case, one can assume that the order parameter is 
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independent of position and restrict the series to the quartic terms. Then Eq. (44) reduces 

to: 

( ) 4
2

2
00 atrH η+η+η−Ψ=ηΨ  .    (45) 

In order for the thermodynamic potential to be at a minimum, the following two 

conditions must be satisfied: 

0

0

2

2

≥
η∂
Ψ∂

=
η∂
Ψ∂

       . (46) 

Substituting Eq. (45) into these two conditions yields: 

0a12tr2

0Ha4tr2
2
020

3
0200

≥η+

=−η+η
 .     (47) 

In the absence of an external field (H=0), for the case t>0, the only real solution is 

. When t<0, the solution is given by: 00 =η

ta2
r

2

0
0 =η  .      (48) 

The generalized susceptibility  is determined as χ
0

HH 2

2

η=η∂
η∂

=
∂

Ψ∂
−=χ . From Eqs. (47) 

and (48) one can obtain: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<−

>

=χ
0t

tr4
1

0t
tr2

1

0

0        (49) 

This is known as the Curie-Weiss law.  
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The last result we are interested in is the dependence of the order parameter on the 

external field. From Eq. (47), the order parameter at t=0 is 

3
2

0 a4
H=η   .      (50) 

The specific heat is given by: 

⎩
⎨
⎧

<

>
=

0ta8kTr3
0t0

C
2

2
c

2
0 ,

,
      (51) 

It is apparent that at the critical temperature, second-order derivatives of the 

thermodynamic potential are discontinuous. Moreover, the susceptibility diverges as t
1 . 

Since this derivation was done without specifying the nature of H and η, these results can 

be generalized for every second-order phase transition considered within the framework 

of Landau theory. 

 It turns out that it is fluctuations that lead to the occurrence of the phase transition. 

As was mentioned before, Landau theory does not take into account such fluctuations. 

Nonetheless, the general idea about the divergence in second-order derivatives of the 

thermodynamic potential remains valid. The dependence of thermodynamic quantities 

upon value of t  can be expressed as follows: 

( )
ν−

δ

γ−

β

α−

∝ξ

=∝η

∝χ

∝η

∝

t

0tH

t

t

tC

1

 .      (52) 

The parameters α, β, γ, δ, and ν are called critical exponents, and ξ is the correlation 

length. The critical exponents show great degree of universality, being the same for quite 
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different systems. In renormalization group theory, all phenomena are divided into 

universality classes depending on the values of the critical exponents. 

In the present example the critical exponents are given by: 

32
112

10 =δ=ν=γ=β=α ;;;;  

 

3.2.5. Correlation function. 

 

 In the present section, the correlation function is related to the correlation length. 

A correlation function can be evaluated in the framework of Landau theory using the 

fluctuation-dissipation theorem (FDT). The correlation function is defined as: 

( ) ( ) ( )[ ] ( ) ( )[ ]rrrrrr ′η−′ηη−η=′ rrrrrr
,g     (53) 

The fluctuation-dissipation theorem11 states that: 

( ) ( ) (∫ ′δ′′=ηδ rrrrr rrrrr Hgd
Tk

1

B

, )      (54) 

if ( )r
r

η  and  are conjugate parameters. Using the most general form of expansion 

given in Eq. (44), we obtain the following equation for correlation function: 

( )r
rH

( )[ ] ( ) ( )rrrrr rrrrr ′−δ=′∇−η+ Tkgca12tr2 B
22

20 ,    (55) 

In the absence of an external field, the average value of the order parameter is given by 

Eq. (48) for t<0 and is zero for t>0. The solution for Eq. (55) in three dimensions is given 

by: 

( ) ( )
c4
Tkexp

,g B

π′−

ξ′−−
=′

rr
rr

rr rr

rr
rr  ,    (56) 

where ξ  takes the form: 
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Generally the correlation function is written in the so-called Ornstein-Zernike form12: 

( ) ( )
p

exp
,g

rr

rr
rr rr

rr
rr

′−

ξ′−−
∝′   ,    (58) 

where ζ+−= 2dp ; d is the dimensionality of the system. Parameter ζ  is another 

critical exponent and in three dimensions 0=ζ . 

 

3.2.6. Scaling hypothesis. 

 

 Since the nature of the order parameter in Landau theory was not specified, it 

must give the same critical exponents for all second-order phase transitions. This 

property is called universality. At the same time, it is now widely accepted that the 

fluctuations near the critical point provide the main mechanism for the second-order 

phase transitions, which Landau theory does not take into account. As the system 

approaches the critical point, the fluctuations grow larger and approach a macroscopic 

size. The hypothesis was made that in the vicinity of the critical point, the only relevant 

parameter is the correlation length, which describes the size of the fluctuations13. Then it 

follows that only two of the critical exponents are independent. The other exponents can 

be expressed in terms of these two, and such expressions are called “scaling laws”: 

( )

( ) lawWidom1
lawRushbrooke22

lawJosephson2
lawFisherd2

−δβ=γ
=γ+β+α

ζ−ν=γ
ν=α−

     (59) 
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 At the critical point, the correlation length diverges and there is no characteristic  

distance relevant to the system. Suppose we take our system and divide it into cells in 

such a way that the size of a cell is much less than the correlation length near the critical 

point but much greater than the interparticle distance. In other words, , where a is 

the interparticle distance and L is the cell size. Since the correlation length is the only 

important parameter, we can average all microscopic variables over any cell and obtain 

the same pattern as we had for original system. In other words, if we enlarge a given cell 

to the size of the system, it would resemble the whole system. The value 

ξ〈〈〈〈La

aLb =  is then 

called the rescaling  factor. The parameters t and H are the only two that can change 

upon rescaling. We may write the transformation rule for these two variables: 

tbt
HbH

y

x

=

=
~

~
        (60) 

All critical exponents can be expressed in terms of x and y. For the correlation 

length it immediately follows that y
1=ν . From Eq. (58) it follows that the correlation 

function scales as . Since the correlation function has the same dimension as , 

we can conclude that  scales as 

ζ−−d2b 2η

η ( ) 2d2b ζ−− . At the same time, since the order parameter is 

given by 
H∂
ϕ∂

=η , it scales as . Combining these two facts together, we obtain: dxb −

x2d2 −+=ζ . Now, using these expressions for ν  and ζ , we can obtain all other 

critical exponents. Altogether, we obtain: 
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It turns out that these scaling laws are also not, in general, correct. In this 

derivation, we completely ignored the microscopic picture and considered only averaged 

parameters without specific details about microscopic interactions. The theory that 

derives critical exponents from more basic principles and sets limits for the applicability 

of the scaling hypothesis is called renormalization group theory (RGT). A detailed 

description of RGT can be found in Ref. 14. 

 

3.4. Incommensurate phases in dielectrics. 

 

3.4.1. Phenomenological theory of incommensurate phases. 

  

 In the present work, we have observed phase transitions in organic molecular 

solids. Some of the phases are incommensurate. A comprehensive review of both 

theoretical and experimental work on dielectrics exhibiting incommensurate phase 

behavior can be found elsewhere15. In this work we present a brief overview of the 

general aspects of incommensurability, discussed in Ref. 15. 
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 It is now generally accepted that an incommensurate phase is characterized by a 

lack of translational periodicity in at least one direction. However, this phase has three-

dimensional long-range order, contrary to amorphous substances. In practice this means 

that the ratio of the periodicity of some order parameter (e.g., polarization or chemical 

composition) to the lattice periodicity is not a rational number. Incommensurate phases 

exhibit several interesting phenomena—nonlinear multi-soliton lattice-type ground state, 

phason excitation, devil’s staircase, solid-state chaos, etc.—that are not found in 

translationally periodic systems. 

In the simplest case the thermodynamic potential can be written as: 
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The incommensurate modulation is in the x-direction. In Fourier form Eq. (62) becomes: 
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At the transition to the incommensurate phase, the function ( ) 42 DkCktAkA ++′=~  

vanishes. Its minimum is located at the point 
D2
Ck 2

0 −= . Thus the temperature of the 

incommensurate phase transition is defined by: 

( ) 0kA 0 =~   ,     (64) 

which yields 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

+=
AD4

C1TT
2

ci  .     (65) 
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Other extrema for the functional (63) exist at k=0. They correspond to either the normal 

(highly symmetric) phase or commensurate low-symmetric phase. In the commensurate 

phase,  and Eq. (63) becomes: ( ) constx =η

B4
tA 22

0
′

−Ψ=Ψ ~~       (66) 

At the same time in the incommensurate phase we have (keeping only terms containing 

): 
00 kk −ηη

( ) ( )
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~~

~~

min

   (67) 

When the thermodynamic potentials become equal, the system “locks” itself in the 

commensurate phase. The temperature of such “lock-in” transition is: 

( )
⎥
⎦

⎤
⎢
⎣

⎡
′
+

−=
AD4

26C1TT
2

cl      (68) 

 In the example considered above, we have a one-component order parameter. Let 

us consider the more general case of the transition from one crystal lattice type into 

another. Our discussion now will follow that in Ref. 10. The crystal can be characterized 

by the electron density , which changes upon the phase transition. The symmetry of 

the crystal poses some restrictions on the function 

( )r
r

ρ

( )r
r

ρ ; namely, ( )r
r

ρ  should remain 

invariant under all symmetry transformations of the crystal space group. Thus we can 

always represent the density as a linear combination of the functions : )n(
iφ

( ) ( )∑∑ φη=ρ
n i

n
i

n
i  ,     (69) 
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where n denotes the number of the irreducible representation, i is the number of the 

function in the basis for that representation. 

 The unit representation leaves all the functions invariant under all transformations 

and represents, therefore, the high-symmetry phase. Eq. (69) can be written as: 

( ) ( )∑ ∑ φη+ρ=δρ+ρ=ρ
n i

n
i

n
i00

'  ,   (70) 

where the prime indicates that the unit representation is excluded from the sum. At the 

transition point all the coefficients iη  must be zero. Therefore, the thermodynamic 

potential can be expanded near the phase transition point in powers of iη . Since the 

thermodynamic potential must not depend on the coordinate system, it has to contain only 

the combination of , which is invariant under group symmetry transformations. The 

linear invariant does not exist, therefore, to lowest order, this expansion is given by 

iη

( ) ( ) ( )( )∑ ∑ η+Ψ=Ψ
n i

2n
i

n
0 TPA ,'  .   (71) 

At the transition point, all A(n) values must be nonnegative in order for the 

potential to be minimal. At the same time, at least one of the A(n) values must change sign 

upon moving through the critical point, otherwise there would be no transition. For 

simplicity we can assume that only one coefficient A(n), corresponding to nth irreducible 

representation,  changes sign. The coefficients iη , belonging to the same representation, 

also become nonzero. This means that the symmetry reduces upon the transition, so that 

the group of symmetry of the crystal below the transition point is the subgroup of the 

group of symmetry above the critical point. Since only nth representation is important,  

the superscript n can be omitted and coefficients iλ  can be introduced as follows: 
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2 ; ηλ=ηη=η ∑       (72) 

where  is the “order parameter”, analogous to the one introduced earlier [see Eq. (44)]. 

It gives the quantitative measure of the deviation from the high-symmetry phase. The set 

of coefficients  represents the structure and the symmetry of the distorted (usually low-

symmetry) phase. The expansion of the thermodynamic potential can be represented as 

follows: 

η

iλ

( ) ( ) ( ) ( ) L+λη+η+Ψ=Ψ ∑
j

i
4

jj
42

0 fTPCTPA ,,   (73) 

where  is the invariant of the fourth order that can be constructed from the 

coefficients . The sum over j extends over all possible invariants of the fourth order. At 

the transition point, the coefficient A must be zero. The set of all 

( ) ( )i
4

jf λ

iλ

iη  plays the role of the 

order parameter in this theory. 

 In the case of two-dimensional order parameter, we must also include in Eq. (73) 

the invariants constructed from the derivatives of iη . The expansion must contain terms 

proportional to 2
iη∇ , as well as terms of the form 

xx
i

k
k

i ∂
η∂

η−
∂
η∂

η  for certain 

symmetry groups. The requirement on these antisymmetric combinations is that one can 

not construct vector components from those quantities. The term, containing those 

antisymmetric combinations is called the Lifshitz invariant. The presence of the Lifshitz 

invariant introduces spatial inhomogeneity and this is what is now called the 

incommensurate phase. With the Lifshitz invariant, the consideration and all general 

results remain the same. 
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3.4.2. Microscopic theory of incommensurate phase. 

 

 It has long been realized that in a system, where different interactions between 

atoms favor different configurations, an incommensurate phase may be expected to form. 

One of the microscopic models with competing interactions is the  model. In this 

model the potential can be written as: 

4φ

( ) ( )
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, (74) 

where un denotes the displacement of the nth atom in a linear chain with spacing a. Thus 

the position of this atom is nuan +⋅ . In the case of negative A, Eq. (74) describes a 

double-well potential. The interactions up to third-neighbor are taken into account by the 

third and the fourth terms. The last term accounts for the influence of pressure. 

 We can redefine the Hamiltonian by replacing un by nuB
C  and V by VCB 2 . 

In the new Hamiltonian, B=1 and 1C
CC ±==~ . 
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where C
AA =~ , C

DD =~ , and C
PP~ = . 

 Replacing un-un-1 by xn, we can obtain the following equilibrium condition for the 

system: 
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Apart from the trivial solution ( 0x n = ) one can obtain two more solutions: 

( )D~9C~4A~,x 2
n ++−== ll     (77) 

and 

( ) ( )D~A~,1x 2n
n +−=−= ll     (78) 

The stability of all possible equilibrium configurations depends on the sign of the second 

derivative. The stability condition implies that the eigenvalues of the matrix 

0xxmn

2

nm xx
V

=
∂∂

∂
=Ω  

at the equilibrium configuration x0 are non-negative. For the trivial solution, the 

eigenvalue equation is given by: 
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It is clear that for arbitrary values of parameters, the right-hand side of Eq. (79) can 

become negative. In that case, the trivial solution loses stability, which means that the 

system transforms into another stable state. The critical wave vector for such a 

transformation is given by: 

( )
D4

D2Cakcos c
+

−=       (80) 

For C=1, D must be greater than 1/2, and for C=-1, D is greater than 1/6. The new ground 

state, with period 
ck

2π  is stabilized by the nonlinear terms in Eq. (74). 
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 Another popular model, which also exhibits features of incommensurability, is the 

Frenkel-Kontorova model. In this model the linear chain of atoms is set in a periodic 

background potential and the atom-atom interaction is harmonic. 
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2
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2
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A detailed discussion of this model can be found elsewhere16, ,17 18. 
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4. Conjugated molecules. 
 

 In this Section we review the fundamental properties and applications of organic 

conjugated molecules. Since the conjugated molecules which we investigated are used in 

organic laser dyes and light-emitting devices, in the first subchapter particular emphasis 

will be placed on the functioning of those devices and physical principles behind their 

operation. In subsequent subsections we review some of the results of research on those 

molecules. 

 

4.1. Organic laser dyes and light-emitting devices (OLED). 

 

4.1.1. Organic dyes. 

 

 Organic laser dyes, used as the active medium for tunable lasers, contain organic 

molecules that absorb over a broad range of the spectrum and exhibit strong 

luminescence19. A schematic diagram of energy levels of an organic dye molecule is 

presented in Fig. 5. Electronic states with total spin equal to zero are called singlet states 

and those with a total spin of one are called triplet states. S0-S2 are the singlet states and 

T1 and T2 are triplet states. The electronic states have fine vibrational-rotational structure. 

An excitation populates the S1 states and, after nonradiative relaxation to the bottom 

level, the excited molecules spontaneously emit a photon and decay to a state in S0. Some 

electrons, however, are excited to higher electronic states or decay to T1 states, from 
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which they can again be excited to T2 states. These absorption processes quench the laser 

radiation. 

Since the organic molecules absorb and emit over a wide range of wavelengths, 

they are extremely useful for tunable lasers, in which the lasing wavelength can be 

changed continuously. This is done by inserting a wave selective device, such as a grating 

or prism, into the laser resonator. It is immediately evident that any change of the energy 

levels can result in a dramatic change in the performance of these molecules as laser 

dyes. Such changes can be caused by inducing transitions between possible molecular 

conformations. 

 

4.1.2. Organic light-emitting devices (OLEDs). 

 

 Another rapidly growing application of organic compounds is organic light-

emitting devices (OLEDs)20. In a light-emitting device, the active layer is sandwiched 

between two electrodes, an anode that injects holes and a cathode that injects electrons. 

An electron and a hole meet in the active layer, and an exciton is formed. This exciton 

decays radiatively and light is emitted. This phenomenon is known as 

electroluminescence, since an applied electric field is used to introduce charges into the 

active layer. One of the electrodes (usually the anode) is made transparent to allow the 

light to escape the device (Fig. 6). The wavelength of the emitted light is determined by 

the energy difference between the highest occupied molecular orbital (HOMO) and the 

lowest unoccupied molecular orbital (LUMO) of the active layer. 
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 The first materials used in light-emitting devices were inorganic compounds such 

as gallium arsenide. Recently, certain organic compounds have emerged as candidates for 

optoelectronic applications. These molecules have delocalized π-orbitals which enable 

them to transport charge. In order to serve as an active layer in an LED, the molecule 

must also have significant overlap between its π-orbitals and those of neighboring 

molecules. This overlap allows the charge to be transported in three dimensions. Suitable 

compounds include poly(phenylene-vinylene) or PPV, tris(8-

hydroxyquinolinato)aluminium or Alq3, pentacene, and regioregular poly(3-

hexylthiophene)21. The difference between HOMO and LUMO energy levels in these 

molecules is analogous to the band gap in conventional semiconductors. 

In order to increase performance, the active layer is typically split into two layers. 

One material is used as the hole transport layer and the other is used as the electron 

transport layer. The electrodes are chosen to have a low work function for the anode and 

a high work function for the cathode. The respective work functions should match the 

electron affinity and ionization potential for active layers22. 

The internal quantum efficiency of the LED is defined as the ratio of the number 

of photons produced to the number of electrons flowing in the external circuit: 

qrstint γ=η  ,       (82) 

where  is the ratio of the number of exciton formation events to the number of electrons 

flowing in the external circuit,  is the fraction of excitons formed as singlets, and q is 

the efficiency of radiative decay of those excitons. It is therefore necessary to achieve a 

good balance between electron and hole currents, efficient capture of electrons and holes 

in the emissive layer, and efficient radiative decay of singlet excitons. 

γ
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Figure 5. Schematic representation of the energy levels and electronic transitions 

of an organic molecule used in laser dyes. 
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Figure 6. Design of the light-emitting device (LED). 
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One of the attractive features of OLED is that the color of emission can be 

controlled by altering the chemical structure of the polymer film. Different side groups 

can work to shift the emission both to the red and to the blue part of the visible spectrum. 

The electrical characteristics of the single-layer devices are hard to model. The 

typical current density-voltage characteristic resembles that of a diode. For PPV with Al 

and indium-tin oxide (ITO) electrodes, for example, the majority of the current is 

expected to be due to the holes. The formula relating current density J and voltage V is 

given by: 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛= 1

nkT
qVexpJJ 0   ,     (83) 

q is the carrier charge here. This formula, however, works best at voltages between 1 and 

2 V and with n ranging from 1.8 to 2.4, compared to n=1 in the ideal case. 

 The OLEDs, especially multilayer devices, are quite complicated optical systems. 

Their optical output is determined by many factors, including interference effects 

between light taking different optical paths within the device. In the simplest model of 

LED with isotropically oriented emitting dipoles the total amount of light produced,  

is related to the light output per unit solid angle in the forward direction, , as follows: 

totalF ,

0L

0
2

total Ln2F π=         (84) 

In the other limiting case, when all the dipoles are aligned within the plane of the film, 

the emission is more preferably in the forward direction: 

0
2

total LnF π=         (85) 

 It should be mentioned that the presence of interfaces affect not only the angular 

distribution of the light emitted, but also the radiative lifetime. For a more detailed 
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analysis the reader is referred to the references given in the review by Greenham and 

Friend (Ref. 20). 

 The simplest model for organic diodes includes the charge transport equations 

coupled with Poisson’s equation: 
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where the current densities are written in the form: 
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In these equations n(p) is the electron (hole) density, Jn (Jp) is the electron (hole) current 

density,  is the electron (hole) mobility, G (R) is the carrier generation 

(recombination) rate, E is the electric field, e is the magnitude of the electron charge, 

)( pn µµ

ε  is 

the static dielectric constant, and T is the temperature. The model is one-dimensional 

because of the geometry of the device. The carrier mobilities are, in general, field 

dependent. Their dependence is described by the Poole-Frenkel form23: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
µ=µ

0
0 E

Eexp        (88) 

The electron-hole recombination is bimolecular, i.e. ( )npR γ= . For the recombination 

coefficient, a Langevin form is often used: 
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µπ

=γ me4  

where  is the larger of two mobilities. The generation rate is determined from the 

detailed balance equation, 

mµ

( )eepnG γ= , where ( )eepn  is the product of equilibrium 

electron and hole concentrations. For a more detailed discussion the reader is referred to 

the Ref. 23 and references therein. 

 

4.2. Conjugated molecules and their investigation. 

 

4.2.1. Introduction. 

 

 As was mentioned in the previous section, molecules which have π-bonds in 

addition to σ-bonds exhibit the ability to transport charge. Those molecules have 

delocalized electrons due to the overlap of π-orbitals and are useful in applications such 

as OLEDs24. Such molecules are called conjugated molecules. The overlap of π-orbitals 

significantly affects their optical properties. If the overlap increases (for example, due to 

application of pressure), the bandgap is red-shifted. 

In their final form, the conjugated polymer molecules tend to be rigid molecules, 

insoluble in common organic solvents. Therefore it is difficult to synthesize those 

molecules directly, because the product will precipitate from the solution while its 

molecular weight is still small. The final product is then difficult to form into the thin 

film needed for the electronic devices. A number of methods have been developed to 

overcome these problems. The most common one is a “precursor route” method, where a 
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soluble “precursor” polymer is prepared and processed to form a thin film. After this step, 

further processing converts this film into the final polymer film. 

The real polymers contain various defects, which break conjugation. These 

defects highly affect the electronic properties of a conjugated polymer and, in turn, are 

strongly dependent on the synthetic route and processing technique. The average number 

of repeated units between conjugation-breaking defects is called the conjugation length. 

Polyphenyls are one type of conjugated molecules. They consist of two or more 

phenyl rings connected to each other via single C-C bonds. It was recognized long ago 

(Ref. 27) that the rings in these molecules are free to rotate around the C-C bond. There 

are several possible conformations that these molecules may have. One is the planar 

conformation, where all the rings are in the same plane. Other conformations involve all 

possible ring twists around the C-C bonds. For the simplest molecule of that type, 

biphenyl, there is only one twisted conformation, with the planes of the rings being at 

some nonzero angle with respect to each other. For p-terphenyl, p-quaterphenyl, and 

other molecules with larger numbers of rings, there exist several possible twisted 

conformations. 

 Now it is widely accepted that the conformation of any polyphenyl molecule is a 

result of the balance between the electrostatic repulsion of hydrogen atoms, which tends 

to twist the rings, and the interaction between π-electrons, which tends to planarize the 

molecule25,26. In the solid state there is also an intermolecular packing force, which favors 

the planar conformation. The outcome of the competition between these forces 

determines the molecular structure. 
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 The first experimental evidence that biphenyl molecules are twisted in the gas 

phase was obtained in 194927. Since then, many investigations have been undertaken to 

analyze not only biphenyl, but also higher-order polyphenyl molecules. 

 

4.2.2. Biphenyl. 

 

 The biphenyl molecule (C12H10) consists of two phenyl rings connected by a 

single C-C bond. In the gas phase, it is twisted, with the angle between ring planes 

approximately 40°27. In the crystal phase, the molecule was determined to be planar28 at 

room temperature. When the temperature is lowered, the structural transition to phase II 

occurs at T=40 K, and the molecule becomes twisted29. Another phase transition, to phase 

III, occurs at T=17 K. These phase transitions were studied by neutron diffraction30, 

neutron scattering31, Brillouin scattering32, X-ray33, nuclear magnetic resonance (NMR)34,  

electron paramagnetic resonance(EPR)35, and Raman scattering36. The schematic phase 

diagram is shown in Fig. 7. 

The two twisted phases of biphenyl are said to be incommensurate, which means 

that the twist angle is modulated along the crystal structure. The change in the twist angle 

can be expressed as follows31: 

( ) ( ) ( )2s21s1 21
cosAcosA Φ+⋅+Φ+⋅=φ rqrqr   (89) 

where  and   are modulation vectors, A
1sq

2sq 1 and A2 are amplitudes, and Φ1 and Φ2 are 

phases. The modulation vectors are related to the reciprocal lattice vectors ( , , ) 

by: 

*a *b *c
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Figure. 7. Schematic phase diagram of biphenyl. 
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for phase II. In phase III, 0ca =δ=δ  so that the two modulation vectors coincide with 

each other32,37. 

Biphenyl has been studied very extensively over the past twenty-five years. The 

phase transition is governed by a double-well potential, which is a result of the balance 

between different forces, which was described earlier (Fig. 8). At low pressure the 

intramolecular potential is stronger and the total potential has two minima. When 

pressure increases, the crystal packing force prevails and the two minima merge to give 

rise to a parabolic type of potential. The phase transition is of displacive type and is 

characterized by a soft mode (see, for example, Ref. 38). A number of models have been 

developed to describe the phase transition and incommensurability of the twisted phases 

of biphenyl. In Ref. 39 the phase transition was induced by the coupling between the soft  

torsional mode and acoustic phonon. A similar model was developed in Ref. 40, but the 

effect of pressure was also included. In both cases the intra-molecular potential was 

represented as: 

42
raint 4

B
2
AV ϕ+ϕ−=  ,    (91) 

where A and B are constants and ϕ is the twist angle of one ring (the total twist is 2ϕ). 

The intermolecular potential tends to planarize molecules and can be written as: 

∑∑
≠

ϕϕ+ϕ=
ji

jiij
i

2
ierint KLV   ,   (92) 

where i and j indicate lattice sites. The total potential is given by: 
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Figure 8. Effective molecular potential at low and high pressures. 
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∑∑
≠

ϕϕ+ϕ+ϕ
′

−=
ji

jiij
i

4
i

2
itot K

4
B

2
AV  ,  (93) 

where . The last term describes the coupling between different molecules. 

The summations extend over all molecules in the crystal. This model is similar to the -

model, which was described earlier, and it allows for the incommensurate ground state to 

exist. 

L2AA −=′

4φ

 A further simplification arises when one assumes a quasi-one-dimensional 

modulation along one of the axes, namely . The potential then looks similar to that in 

Eq. (74): 

*b

2mm2

m
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2
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4
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+

+

ϕϕ+

ϕϕ+ϕ+ϕ′−ϕ= ∑   (94) 

Using this potential, the transition temperature was determined by mean-field theory for 

both biphenyl and p-terphenyl41. 

 In Ref. 42, the Williams type of atom-atom potential43 was used to model the 

molecular dymanics of biphenyl. The developed structure, however, is different from the 

X-ray experimental results. Recently a number of ab initio calculations have been 

performed in order to determine the torsional barriers and other properties of 

biphenyl44, ,45 46.  

 
4.2.3. P-terphenyl. 

 

The p-terphenyl molecule is similar to biphenyl. P-terphenyl undergoes a 

structural phase transition at 193 K, below which point the molecule becomes non-planar. 

In the planar conformation it has D2h symmetry. Since this molecule contains three 
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phenyl rings, there are several possible models for the non-planar structure. In Ref. 47, it 

was shown by x-ray diffraction that the central ring becomes twisted, with twist angles of 

16 and 25° with respect to external ones. This molecule possesses C2h symmetry. As with 

biphenyl, p-terphenyl has an incommensurate phase, such that twist angle is modulated 

throughout the crystal. Unlike biphenyl, however, the p-terphenyl molecule preserves its 

center of symmetry upon the phase transition. The rotational disorder in the 

incommensurate phase was explained by considering non-bonded interactions48, using the 

Williams-type of potential49. The temperature-induced phase transition was studied by 

fluorescence emission50, Raman scattering51, ,52 53, Brillouin scattering54, NMR55, EPR56, 

and by infrared (IR) spectroscopy57. It was shown in Refs. 52 and 57 that certain Raman 

and IR peaks disappear upon the phase transition, when the temperature is raised above 

the critical point. 

 A number of theoretical investigations have been carried out to determine the 

structure of the p-terphenyl molecule. In Ref. 58 semi-empirical calculations, using the 

INDO-type method59, have shown that the p-terphenyl molecule has two nearly 

isoenergetic isomers of D2 and C2h symmetries, with D2 being slightly more stable than 

C2h. Akiyama60 has determined, using similar methods, that p-terphenyl in solution has 

C2 symmetry. In Ref. 64, p-terphenyl was studied in a carbon disulfide solution, and the 

analysis of infrared band intensities led the authors to conclude that the conformation in 

solution has D2 symmetry. This conclusion contradicted the theoretical results of 

Akiyama (Ref. 60). A conformational analysis of various isomers of p-terphenyl by 

photoelectron spectroscopy has also been performed61,62. It was found that p-terphenyl in 

 57



the gas phase has twisted conformation, with twist angle of about 42°, whereas in the 

solid state at room temperature it is planar. 

 It is evident that hydrostatic pressure provides an excellent tool for studying phase 

transitions, especially those which involve a balance between inter- and intramolecular 

forces. Pressure shifts this balance by increasing the intermolecular forces. At low 

temperatures and pressures, the polyphenyl molecule is in its twisted conformation. As 

pressure increases, it goes through a phase transition and becomes planar. The influence 

of pressure on the conformation of p-terphenyl has been studied by Raman scattering63, 

infrared absorption64, and optical absorption65. The observed changes in the spectra 

clearly indicated the presence of a phase transition. 

 

4.2.4. P-quaterphenyl. 

 

 The p-quaterphenyl molecule resembles biphenyl and p-terphenyl in its behavior. 

This compound is planar at room temperature and undergoes a phase transition at T=243 

K, when the molecule becomes twisted. Similarly, the molecule planarizes when the 

pressure is increased. Analogously to biphenyl, this molecule loses its center of inversion 

symmetry upon the phase transition. The symmetry group in the low-pressure and low-

temperature phase is D2. Quaterphenyl was also investigated by different techniques 

mentioned earlier for biphenyl and p-terphenyl, but not as extensively96,52,66. 
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5. Experimental methods. 
 

 In this Section we review devices used in high-pressure research and Fourier-

transform infrared spectroscopy, methods of achieving high pressure, pressure 

monitoring, infrared spectroscopy techniques, and advantages of Fourier-transform 

spectroscopy compared to other spectroscopic methods. 

 

5.1. High-pressure apparatus. 

 

5.1.1. Diamond-anvil cells. 

 

 The experimental task to achieve very high pressures has been a major challenge 

for scientists. The invention of the diamond anvil cell (DAC) provided an extremely 

powerful tool for reaching pressures in the megabar region (1 megabar=106 atm=103 

kbar=100 GPa). The first DAC is attributed to the work of Lawson and Tang67, who used 

a diamond to achieve high pressures for x-ray diffraction studies. A decade later, two 

other versions of DACs appeared independently68,69 and the DAC has been widely used 

in high-pressure physics ever since. 

 Here I present a review of DACs and their applications to high-pressure research, 

following the review given by Jayaraman70. 

 There are several types of DACs, among which five major types are 

distinguished. They are the National Bureau of Standards cell, Bassett cell, Mao-Bell cell, 

Syassen-Holzapfer cell, and Merrill Bassett cell. These cells are shown in Fig. 9-13 [70].  
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Figure 9. Schematic picture of the National Bureau of Standards (NBS) diamond-anvil 

cell (DAC) design[71]. 

 

 

Figure 10. Schematic picture of the Bassett diamond-anvil cell (DAC) design[72]. 
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Figure 11. Schematic picture of the Mao-Bell diamond-anvil cell (DAC) design [73]. 

 

Figure 12. Schematic picture of the Syassen-Holzapfer diamond-anvil cell (DAC) design 

[74].  
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Figure 13. Schematic picture of the Merill-Bassett diamond-anvil cell (DAC) design [75]. 

 62



All these cells use diamonds as anvils. The sample is placed between two flat 

surfaces of the diamonds and the force is applied to push the diamonds together. Since 

the areas of the diamond surfaces are small, a DAC is usually capable of achieving a 

pressure of hundreds of kbar. The Mao-Bell cell is superior to the other types of cells, 

being able to reach pressures up to several megabar. The diamonds have a typical size of 

1/8 to ½ carat with an anvil flat (culet) diameter ranging from 0.3 to 0.7 mm. The 

diamonds are shaped in the forms of octagons or polygons with as many as 16 sides. The 

surface opposite to the culet is of 2 to 5 mm in diameter. Generally, larger diamonds are 

preferred for larger pressures. 

 The metal gasket for the DAC was first introduced in 1965 (Ref. 76). The gasket 

is preindented by the culets to a thickness of 0.05 to 0.2 mm. A hole is then drilled in the 

center of the indentation and the sample of interest is put in the hole, together with a ruby 

chip for pressure calibration. A pressure-transmitting fluid is also placed in the hole to 

provide hydrostatic pressure. In addition to confining the sample, the gasket provides 

support to the diamonds. Beveling of the edges of the anvils is required for megabar 

pressures. 

 Pressure calibration in the DAC is made via the ruby fluorescence method77,78. 

This calibration technique uses the ruby fluorescence lines, which at atmospheric 

pressure are at 692.7 and 694.2 nm. These lines shift linearly with pressure up to 200 

kbar79. For higher pressures, a correction is required due to the nonlinearity of the shifts. 

The following formula has been proposed for the pressure determination80: 

( )[ ]113808P 5 −+λλ∆=   ,   (95) 
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where P is in kbar and λλ∆  is the fractional shift in wavelength. Ruby fluorescence has 

been the preferred pressure calibration method for the past twenty five years. 

Many fluids are suitable for providing hydrostatic pressure. The range of 

pressures at which the liquid has hydrostatic behavior varies from 90 kbar for argon to 

more than 600 kbar for helium and hydrogen. In Table II, data for several pressure-

transmitting liquids are summarized. 

 Diamond-anvil cells have long been used for spectroscopy. The transparency of 

diamond, over a wide spectral range, makes it a very useful material for high-pressure 

spectroscopy. However, the culet size of the diamonds is small, and the gasketing reduces 

the working space even further. As a result, one has to deal with tiny apertures of about 

0.3 mm in diameter. This drastically reduces the signal from the detector. In general, the 

researcher has to focus the light onto the sample and bring the detector as close to the 

sample as possible. 

In the present experiments, a piston-cylinder DAC was used. The alignment 

system consists of three screws to adjust the orientation for the diamond mounted on the 

hemispherical backing plate. Three other screws are used to adjust the translational 

alignment of the other diamond. The pressure is provided by tightening six Allen screws 

placed at the corners of a regular hexagon, as viewed along the axis of the cell. The 

piston has a polished cone that helps to focus the light onto the sample. The detector is 

located at the opposite side of the top diamond. The whole assembly is attached to the 

sample holder and the parabolical mirror is used to focus the light onto the sample (Fig. 

14). 
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Figure 14. Schematic representation of the low-temperature high-pressure IR-

spectroscopy device. 

 

Table II. Some pressure media and their pressure ranges (Ref. 70). 

Medium Freezing pressure 
at RT (kbar) 

Pressure range of 
hydrostatic  

behavior (kbar) 
Comments 

Methanol:ethanol 
4:1 104 ~200 Easy filling 

Methanol:ethanol: 
Water 16:3:1 145 ~200 ″ 

He 118 >600 Cryogenic or high-
pressure filling 

Ne 47 160 ″ 

Ar 12 90 ″ 

Xe -- 300 Cooling below  
165 K needed 

H2 57 >600 Cryogenic or high-
pressure filling 

D2 253 ±  -- ″ 

N2 24 130 Cryogenic filling 

O2 59 -- ″ 
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The sample holder is placed into the cryostat, where the low-temperature 

measurements are performed. The DAC can also be used for room temperature 

measurements. 

 

5.1.2. Diamond-anvil cell alignment. 

 

 After the diamonds are placed on their base plates, they must be aligned in order 

to provide high pressure without cracking. The first condition for alignment is 

parallelism, in which the culet surfaces are parallel to each other. This is accomplished by 

adjusting screws for the hemispherical base plate. During these fine adjustments, 

interference fringes are observed in the microscope. The goal is to make the fringes as 

broad as possible, in which case the culet surfaces are almost parallel to each other. After 

this task was completed, translational alignment is performed. Again, looking into the 

microscope allows one to monitor the two culet surfaces. After the diamonds are aligned, 

the Allen screws are tightened slightly to make the fringes completely disappear. This 

procedure ensures nearly perfect parallelism of the culet planes. Three reference points 

are marked on the piston and their heights are measured with an indicator, to an accuracy 

of 2 µm. The relative heights of these points must be maintained throughout the 

experiment. 
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5.1.3. Diamond-anvil cell loading. 

 

 We used a circular piston-cylinder type DAC, similar to the cell described in Ref. 

81, with type I diamonds with culet diameters of 700 µm. A stainless steel gasket of 250 

µm thickness was pre-indented to 100 µm. A hole of 340 µm in diameter was drilled in 

the center of the indentation, using a carbide drill. A sample was placed in the hole and 

the whole cell was assembled and immersed in liquid nitrogen. Compressed helium gas 

was bubbled into the liquid nitrogen to suppress boiling. Liquid nitrogen seeped into the 

hole in the gasket. Then the Allen screws were tightened to apply force to the diamonds 

and pressure to the nitrogen and the sample. The cell was then taken out of the liquid 

nitrogen and warmed up to room temperature. The condition of the sample was checked 

with the microscope. The relative height of three reference points, mentioned in the 

previous section, was measured and adjustments are made, if necessary, to maintain 

alignment. Subsequent pressure adjustments were made by either loosening or tightening 

one or more of the Allen screws. 

 

5.1.4. Low-temperature measurements. 

 

 After the loading was completed, the cell was mounted onto the sample holder 

and put into a Janis continuous-flow liquid-helium cryostat with wedged zinc selenide 

windows. The temperature was maintained at approximately 8 K. The pressure was 

determined by measuring the vibrational frequency of CO2 in the nitrogen matrix. Its 
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pressure dependence was determined in Ref. 82. Thus it serves as good in situ pressure 

calibration in the range from 0 to 7 GPa. 

 

5.1.5. Fluorescence measurement system. 

 

 As was mentioned before, one of the most common methods to determine the 

pressure in a DAC is to measure the shift of the ruby fluorescence lines. Our fluorescence 

measurement system consists of a monochromator, a charge-coupled device (CCD) array 

detector, a controller, and a computer. Green laser light (532 nm) from a laser pointer is 

the excitation source for the ruby fluorescence. The detection system uses a liquid 

nitrogen (LN) cooled CCD detector and Acton SpectraPro 300i 

monochromator/spectrograph. It has three gratings, which cover a broad range of the 

spectrum from visible to near-infrared. In order to suppress the signal from the laser light, 

a red filter is placed in front of the spectrograph slit. The controller is programmed by the 

computer and determines the setup for spectra acquisition. The detector must be cooled to 

LN temperature. In order to maintain the appropriate temperature, a 1.7 liter Dewar is 

mounted on the back side of the CCD matrix. When filled with liquid nitrogen, the 

Dewar maintains the necessary temperature for approximately 30 hours. The 

commercially available software WinSpec32 is installed onto the computer and is used to 

save and analyze all the data obtained. 
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5.2. Fourier transform infrared spectroscopy (FT-IR). 

 

5.2.1. Basic theory of FT-IR. 

 

 Fourier-transform infrared spectroscopy (FT-IR) is an important technique used in 

biology, chemistry, and physics. The discussion in this section follows the review given 

by Griffiths83. The basis for FT-IR spectroscopy is the Michelson interferometer (Fig. 

15). A broadband beam of radiation from the source impinges on the beam splitter, where 

it is partially reflected to the fixed mirror and partially transmitted to the movable mirror. 

The two beams are reflected back to the source and onto the detector. When the two 

mirrors are at the same distance from the beam splitter, the path difference between the 

two beams is zero and they interfere constructively. 

When one of the mirrors is moved, a path difference δ  is introduced, and there is 

a nonzero phase shift between the two beams. The intensity of the beam at the detector is 

given by the following expression: 

( ) ( ) ( )[ ] ( ) ( )[ ]δπ+=λ
δπ+λ=δ k2cos1kI5.02cos1I5.0I   , (96) 

where  is the wavelength and k is the wave number, λ
λ

=
1k . The cosinusoidal part of 

Eq. (96) is the interferogram, and will be of interest in this discussion. The spectrometer 

obtains the value . The real intensity as a function of wave number, I(k), is obtained 

via Fourier transformation of  

( )δI

( )δI . This transformation is given by: 

( ) ( ) ( )∫
+∞

∞−

δ⋅δπδ= dk2cosIkI  .     (97) 
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Figure 15. Michelson interferometer. 
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For real systems, we must introduce two corrections. The first takes into account the 

efficiency of beamsplitter, amplification characteristics, and detector response. 

Experimentally, we obtain not the true I(k), but some other function B(k), due to these 

factors. The second correction accounts for the fact that the path length difference is 

limited by a maximum value . Thus the spectrum obtained will be given by: ∆

( ) ( ) ( ) ( )∫
+∞

∞−

δ⋅δπδδ= dk2cosDIkG  ,    (98) 

where  is the truncation function, which is zero for all ( )δD ∆>δ . The shape of this 

function can be quite arbitrary, the simplest being the boxcar function, which is equal to 

one for all ∆<δ . 

 The function G(k) can be viewed as the convolution of the true spectrum, B(k), 

and the Fourier-transform of the truncation function, ( )δD : 

( ) ( ) ( )∫
+∞

∞−

′⋅′−′= kdkkfkBkG  ,     (99) 

where f(k) is given by: 

( ) ( ) ( )∫
∆

∆−

δ⋅δπδ= dk2cosDkf  .     (100) 

The function f(k) is called the instrument line shape (ILS). For the boxcar truncation 

function and monochromatic spectral line of wavenumber , we obtain for G(k): 1k

( ) ( ) ( )[ ]
( )∆−π

∆−π
⋅⋅∆=

kk2
kk2sinkB2kG

1

1
1  .    (101) 

It turns out that the spectral resolution can be affected by the choice of the 

function . There are many types of truncation functions, and for some of them the ( )δD
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side oscillations in the interferogram are suppressed. This suppression is called 

apodization and the appropriate ( )δD  is called the apodization function. A more detailed 

discussion of this problem can be found elsewhere84. 

Other factors affecting the performance of Fourier transform spectrometers are the 

beam divergence, mirror misalignment, and poor mirror drive. The first factor sets the 

limit for the achievable resolution, k∆ , to be 

2
maxkk α=∆   ,      (102) 

where  is the divergence angle and kα max is the maximum wave number in the spectrum. 

A detailed derivation of Eq. (102) can be found in Ref. 83.  

For an ideal spectrometer, the ratio of the intensity at zero path difference to the 

intensity at large path difference is two.  Therefore, the parameter R, 

( ) ( )
( )∞

∞−
=

I
I0IR        (103) 

is equal to 1. For a real spectrometer, the value of R gives a measure of how well the 

interferometer is aligned. 

 A poor mirror drive can lead to a loss in resolution. If the mirror is tilted by an 

angle β , then the difference in retardation, δ∆ , is: 

β≈β=δ∆ D2tanD2        (104) 

for small , where D is the beam diameter. A loss in resolution occurs when β λ>δ∆ 1.0 . 

Then the tilt angle must satisfy the following inequality: 

maxDk20
1

≤β   .      (105) 
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For D=5 cm and kmax=5000 cm-1 the angle β  must be less than 2 µrad. The critical angle 

may be increased by aperturing the beam, but only at the cost of a decrease in beam 

intensity. 

 To obtain a spectrum, an inverse Fourier transform must be performed [Eq.(97)]. 

Cooley and Tukey85 developed a fast Fourier transform (FFT) algorithm, which uses a 

low number of operations. Another important issue is the phase correction, due to optical, 

electronic, and sampling effects. There are several methods to address the problem of 

phase correction, most famous of them being described by Mertz86 and Forman87. 

 

5.2.2. Beer’s Law. 

 

 While traveling through an absorbing medium, a beam of radiation decreases in 

intensity. The change in intensity is proportional to intensity itself: 

In
dx
dI

σ−=  ,       (106) 

where  is the absorption cross section and n is the concentration of absorbing particles. 

Assuming that the concentration is uniform in space, we obtain Beer’s law: 

σ

dn
0eII σ−=  ,       (107) 

where d is the thickness of the sample. The beam intensity exponentially decreases with 

the thickness of the medium through which the beam travels. 

 Beer’s law is valid for dilute solutions. Deviations may arise due to a non-uniform 

distribution of absorbing centers, stray light coming into the system, or nonlinear effects 

at high intensities. In general, the absorption cross section is frequency dependent. For 

example, a system absorbs light at the vibrational frequencies of the molecules 
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composing it. This absorption is seen in the spectrum as “dips” in the intensity measured 

by the detector. 

 

5.2.3. Beamsplitters for FT-IR spectrometers. 

 

 One of the most important parts of the FT-IR spectrometer is the beamsplitter. 

Suppose that a beamsplitter has a reflectance R and a transmittance T. Neglecting any 

absorption of radiation in the beamsplitter, we can write: 

1TR =+         (108) 

It can be shown that if the incident intensity is I, then the intensity of light going towards 

the detector is given by ( . Given Eq. (108), the value of 2RT reaches maximum at 

R=T=0.5, at which point it 2RT=0.5. This explains the appearance of the coefficient 0.5 

in Eq. (96), where we implicitly assumed an ideal beamsplitter. To account for an 

imperfect beamsplitter, Eq. (96) can be rewritten as: 

)IRT2

( ) ( ) ( ) ( )[ ]δπ+η=δ k2cos1kIk5.0I   ,   (109) 

where . The function ( ) RT4k =η ( )kη  is known as the relative beamsplitter efficiency 

and should be as close to unity as possible over the widest possible spectral range. Some 

materials that are used as beamsplitters include polyethylene terephthalate (Mylar), 

germanium, CsI, CsBr, and KBr. The two most commonly used materials are Mylar and 

KBr. The choice of beamsplitter is dictated by the spectral range of interest. Mylar is 

used in the far-infrared region, whereas in the mid-infrared region it is necessary to use 

KBr. 
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5.2.4. Infrared detectors. 

 

 Infrared detectors are usually divided into two major classes: thermal detectors 

and quantum detectors. Thermal detectors sense the change in the temperature of the 

absorbing material. Such a change can result in electromotive force (thermocouple), 

change in resistance (bolometer, thermistor), movement of a membrane caused by 

thermal expansion of a gas (pneumatic detector), which, in turn, causes the change in 

illumination of auxiliary cell (Golay detector). Thermal detectors are usually slow. The 

most sensitive are Golay detectors and pyroelectric bolometers. Thermal detectors are 

usually used in the far-infrared spectral region. 

Quantum detectors use the property that photons can excite electrons in solids 

from the valence band into the conduction band. Some of these detectors use impurity 

atoms, which absorb photons with energies lower than the band gap. Examples include 

PbS, mercury cadmium telluride (MCT), germanium doped with copper, gallium or 

antimony, and InSb. Quantum detectors are much faster than thermal detectors. However, 

these detectors have a sharp cutoff at low wavenumbers, and their response is influenced 

by thermal noise. This leads to the requirement that these detectors need to be cooled. 

Some detectors, like MCT, operate at liquid nitrogen temperature (77 K). Others, like 

doped germanium, require liquid helium temperatures (4.2-12 K). Quantum detectors are 

used in the mid- to near-infrared spectral range. 
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5.3. Advantages of FT-IR spectrometers. 

 

 Besides the FT-IR spectrometers there are also various grating IR spectrometers. 

Their relative performance is very important to know when choosing among them for the 

particular experiment. There exist theoretical criteria to judge the relative efficiency of 

two spectrometers, which will be discussed below. Also practical results have been 

obtained and will be described as well. 

 

5.3.1. Jacquinot’s advantage. 

 

 An important parameter which characterizes the efficiency of a spectrometer is 

the throughput. The throughput is defined as the product of the beam area and its solid 

angle at any focus. For the Fourier spectrometer, the throughput is given by: 

F
max

F A
k

k2 ∆
π=Θ  ,     (110) 

where AF is the area of the mirrors that are illuminated. For the grating spectrometer the 

throughput is: 

2
G

G kaf
khA ∆

=Θ   ,     (111) 

where h is the height of the slit, f is the focal length of the collimating mirror, a is the 

grating constant. The ratio of two throughputs, J, known as Jacquinot’s advantage, is 

given by: 
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maxG

2
F

hkA
kafA2J π

=  .     (112) 

A calculation of J for several spectrometers showed that for all but very low 

wavenumbers, the FT-IR spectrometer is significantly better than a grating spectrometer 

(see, for example, Ref. [88]). 

 

5.3.2. Fellgett’s advantage. 

 

 The signal-to-noise ratio (SNR) for a Fourier spectrometer will be greater than the 

SNR for a grating spectrometer by a factor of M , where M is the number of resolution 

elements, provided that all other parameters are the same. For example, for the mid-

infrared spectrum taken in the range from 400 to 4000 cm-1 with a resolution of 1 cm-1, 

Fellgett’s advantage will be 603600 = . In addition, the time advantage for an FTIR 

spectrometer is directly proportional to M. 

 Combining Jacquinot’s and Fellgett’s advantages, it can be shown that a Fourier 

spectrometer will be 2000-3000 times more sensitive than a grating spectrometer. In 

practice, however, a smaller advantage is observed. This is due to noise arising from 

other parts of the FTIR spectrometer, mainly the detector. 

 

5.3.3. Fourier-transform infrared (FT-IR) spectrometry. 

 

 The DA8 Bomem FT-IR spectrometer was used in obtaining the data for this 

work. A Globar, which is a heated ceramic, was used as a broadband light source (200 to 
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10000 cm-1). The beamsplitters used were KBr for the mid-infrared region (450 to 5000 

cm-1) and Mylar for far-infrared region (125 to 850 cm-1). The pressure inside the FT-IR 

compartment is maintained at a level of 2.0≤  Torr and the Globar is cooled by the flow 

of chilled water. The moving mirror velocity can vary from 0.01 to 4 cm/s and the 

aperture ranges from 0.5 to 10 mm. Mirrors alignment is maintained with the help of a 

He-Ne laser. Monochromatic laser light creates an interferogram and several detectors 

sense it. If the mirrors are out of alignment, the interferograms for different detectors 

exhibit relative phase shift, which can be measured. This shift gives the signal for 

alignment transducers to correct the misalignment.  

For room-temperature measurements, we used an MCT detector for mid-infrared 

spectra and a DTGS detector for the far-infrared. For low-temperature measurements, a 

Ge:Cu photoconductive detector was used. Its operation is limited to liquid helium 

temperatures. The spectrometer is connected via Ethernet cable to the computer with 

PCDA software for the data acquisition and the GRAMS software package to process and 

analyze the spectra. 
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6. Present work. 
 

6.1. Organic conjugated molecules under pressure. 

 

 Although the investigation of polyphenyls has been quite extensive, there are 

relatively few reports on high-pressure research on these molecular solids. The 

conformation of p-terphenyl in its twisted conformation is still under question. In the 

following sections, the results of FTIR spectroscopy on biphenyl, p-terphenyl, and p-

quaterphenyl under hydrostatic pressure are presented. 

 

6.1.1. Biphenyl. 
 

6.1.1.1. Experimental results. 
 

In this section, high-pressure IR spectroscopy experiments on biphenyl are 

discussed. Some of these results have been published in Ref. 89. 

Two samples were investigated. First, protreated biphenyl ( ), hereafter 

referred to simply as biphenyl, was measured. Second, deuterated biphenyl ( , or 

biphenyl-d

1012HC

1012DC )

10, was measured. In the latter sample, every hydrogen was replaced by a 

deuterium, with an isotopic purity of 98%90. The IR spectra for biphenyl are shown in 

Fig. 16 and spectra for deuterated biphenyl are shown in Fig. 17. Resolution was 2 cm-1. 
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Figure 16. Biphenyl spectra at pressures below and above phase transition. 

IR-modes, that disappear upon transition, are indicated by arrows. 
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Figure 17. Deuterated biphenyl spectra at pressures below and above phase transition. 

IR-modes, that disappear upon transition, are indicated by arrows. 
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By progressively increasing the pressure we found that certain peaks disappear 

when the pressure rises above certain value. Those peaks that disappear are indicated by 

arrows. The spectral range from 500 to 1100 cm-1 corresponds to out-of-plane motion of 

hydrogen atoms in which the atomic displacement is perpendicular to the plane of the 

appropriate ring. There are three peaks in the biphenyl spectrum in the range 500-800 

 that disappear upon the phase transition [Fig. 16(a)]. The spectral range from 1100 

to 1800 cm

1cm−

-1 includes in-plane hydrogen bending modes. Upon substitution with 

deuterium, hydrogen-related frequencies should decrease by some factor, which in an 

“ideal” case is 2 . From Fig. 17(a) it is seen that there are two peaks, at 545 and 655 cm-

1, that disappear in deuterated biphenyl. Relative to the hydrogen peaks at 679 and 790 

cm-1 [Fig. 16(a)], the deuterium peaks are shifted downward by a factor less than 2 . The 

deviation from the ideal case is due to anharmonic effects as well as significant motion of 

the carbon atoms (see Appendix B). In the observed spectra the strongest peaks were 

found to be due to out-of-plane hydrogen motion. 

The pressure-dependent shifts of several out-of-plane hydrogen bending modes 

are plotted for biphenyl in Fig. 18. In Fig. 19 we plotted the normalized intensities for 

two peaks that disappear after the phase transition, as a function of pressure. 

Uncertainties in data are smaller than the size of points in Fig. 18, 19. The intensity of the 

peak at approximately 836 cm-1 was chosen as a reference for the normalization. At a 

pressure between 0.07 and 0.4 GPa, the integrated absorbance of the peaks at 790 and 

841 cm-1 drops to zero, to within experimental uncertainty. Our results are in agreement 

with those of Ref. 36, which reported a phase transition at 0.18 GPa. 

 82



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
770

780

790

830

840

850

 

W
av

e 
nu

m
be

r (
cm

-1
)

Pressure (GPa)  

Figure 18. Frequency dependence of several IR-modes on the pressure for biphenyl. 
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Figure 19. Normalized intensity dependence on the pressure for two IR-modes that 

become IR-inactive upon phase transition for the biphenyl molecule. 
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6.1.1.2. Group theory. 

 

To explain the disappearance of IR activity for certain vibrational modes, we 

applied group theory to analyze the normal vibrational modes of the molecules. The z-

axis in our analysis is directed along the main axis of the molecule, the x-axis is in the 

molecular plane for the planar conformation, and the y-axis is perpendicular to the plane. 

A schematic diagram of biphenyl in its twisted conformation is shown in Fig. 20.  

The twisted conformation of biphenyl belongs to the D2 point group. The 

vibrational modes can be classified as follows: 

Γ = 15A ⊕ 13B1 ⊕ 16B2 ⊕16B3       

Modes belonging to the B1, B2, or B3 irreducible representations are IR-active, for a total 

of 45 IR-active modes. For the planar configuration, biphenyl belongs to the D2h point 

group. The vibrational modes are given by: 

 Γ = 11Ag ⊕ 4Au ⊕ 3B1g ⊕ 10B2g ⊕ 6B3g ⊕ 10B1u ⊕ 6B2u ⊕10B3u   

Modes belonging to the B1u, B2u, or B3u irreducible representations are IR-active, for a 

total of 26 IR-active modes. Upon planarization, some of the B1, B2, and B3 modes 

transform into B1g, B2g, and B3g modes, which are IR-inactive. This disappearance of 

certain IR absorption peaks is in qualitative agreement with our experimental 

observations. 
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Figure 20. Biphenyl molecule structure in the twisted conformation. 

 

Y

X

 

 

Figure 21. Schematic representation of the mechanism of IR-activity loss for one of the 

hydrogen out-of-plane modes for the biphenyl molecule. 

 85



In Fig. 21, one of the B3 modes is shown schematically. The cross sections of the 

phenyl rings are represented as rectangles and the dipole moments, induced by the motion 

of hydrogen atoms, are shown by the arrows. In the twisted conformation, the mode has a 

net induced dipole moment in the x-direction. In the planar conformation, the dipoles 

exactly cancel, so that the mode is IR-inactive. 

 

6.1.1.3. Numerical calculations. 

 

 Ab initio and DFT calculations are used extensively to model molecular and 

atomic systems. The biphenyl structure has been numerically calculated by previous 

researches91,92. In this work, calculations have been performed in order to simulate the IR 

spectra of biphenyl and deuterated biphenyl, using Gaussian 98W (Ref. 9). We used the 

density functional theory (DFT) Becke 3-parameter method93 with the Lee-Yang-Parr 

correlation functional and the basis set 6-31G(d). The details about calculations and basis 

sets have been described previously. 

 For the twisted structure, the calculated dihedral angle between two phenyl rings 

is 38º for biphenyl and 35º for deuterated biphenyl. Electron diffraction experiments on 

biphenyl in the gas phase yielded a dihedral angle of 40º (Ref. 27), in good agreement 

with our calculations. Numerical optimization of the geometric structure of the molecules 

yields a configuration that belongs to the C2 point group. This low symmetry is due to a 

distortion of the phenyl rings. However, the deviation from planarity in each phenyl ring 

is very small. To a good approximation, we can consider this molecule as belonging to 

the D2 point group, and our previous group-theory analysis remains valid.  
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Table III. Vibrational modes in biphenyl ( ) that are IR active in the twisted 

conformation but IR inactive in the planar conformation. 

1012HC

Calculated Experimental 

Frequency 

(cm-1) 

Normalized 

intensity 

Symmetry Mode character Frequency 

(cm-1) 

Normalized 

intensity 

559.9 0.2622 B3 H out-of-plane 552.9 0.272 

628.6 0.0006 B2 C-H in-plane NDa NDa

714.7 1 B3 H out-of-plane 679.3 0.745 

796.9 0.88 B3 " 789.7 1 

860.9 0.086 B1 " 840.7 0.720 

938.5 0.15 B3 " 912.1 0.041 

968.7 0.1248 B2 " 965.8 0.377 

995.6 0.0096 B2 " NDa NDa

1116.1 0.061 B1 H in-plane NDa,b NDa,b

1192.9 0.0002 B3 " NDa,b NDa,b

aND = not discovered. 

bCalculated frequency lies within diamond absorption band. 
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Table IV. Vibrational modes in deuterated biphenyl ( ) that are IR active in the 

twisted conformation but IR inactive in the planar conformation. 

1012DC

Calculated Experimental 

Frequency 

(cm-1) 

Normalized 

intensity 

Symmetry Mode character Frequency 

(cm-1) 

Normalized 

intensity 

567.07 1 B3 D out-of-plane 544.5 0.340 

602.82 0.0018 B2 D in-plane+ring 

distortion 

NDa NDa

668.63 0.14 B3 D out-of-plane 655.3 0.752 

670.04 0.1456 B1 " NDa NDa

784.29 0.264 B1 D out-of-plane+ring 

distortion 

786.3 0.337 

789.11 0.161 B3 " 789.5 0.444 

838.72 0.4535 B3 

 

D in-plane+ring 

distortion 

832.5 1 

844.02 0.0789 B2 D in-plane 838.8 0.187 

862.8 0.0301 B2 " 853.0 0.188 

1071.88 0.0005 B2 " NDa NDa

 

aND=not discovered 
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The vibrational spectra calculations were made with the symmetry restricted to 

the D2 point group. The planar conformation of the molecule, belonging to the  point 

group, turns out to be stable during the calculations. One of the calculated frequencies is 

imaginary, however, indicating that the planar configuration is not a minimum on the 

potential energy surface. 

h2D

A correspondence was made between vibrational modes in the planar and twisted 

conformations by examining similarities in the character of motion, reduced mass, 

frequency, and IR intensity for any given pair of modes. Frequencies that are IR-active in 

the twisted conformation but IR-inactive in the planar conformation, as predicted by this 

computation for the twisted conformation of biphenyl, are listed in Table II together with 

the experimental results. The frequencies for vibrational modes in deuterated biphenyl are 

given in Table III. In biphenyl, we did not observe hydrogen in-plane modes because the 

frequencies of those modes lie within the diamond absorption band. In deuterated 

biphenyl, however, these modes are shifted downward in frequency and therefore become 

observable. In both tables the intensity normalization was carried out with respect to the 

highest-intensity peak. In order to illustrate the disappearance of IR-active peaks, the 

calculated intensity of two peaks at 715 and 797 cm-1 is plotted as a function of dihedral 

angle between the phenyl rings (Fig. 22). The outlying data point at 38º is probably due 

to the fact that all other angles correspond to non-optimal structures. The experimental 

intensities and frequencies approximately match the theoretical ones, with the exception 

of the experimental peak at 840.7  for biphenyl. According to Fig. 17, there is a 

possibility that this peak simply merges with the peak at 836 , and is not in fact a 

“disappearing peak.” 

1cm−

1cm−
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Figure 22. Calculated intensity dependence of two IR-modes on the twist angle between 

two phenyl rings in the biphenyl molecule. 
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In Tables III and IV the characters of the vibrational modes are described briefly. 

“H out-of-plane” corresponds to the hydrogen atoms moving perpendicular to the plane 

of a phenyl ring. “H in-plane” corresponds to the hydrogen atoms moving in the plane of 

a phenyl ring. “C-H in-plane” means that carbon atoms are moving significantly as well. 

The same descriptions apply for the deuterium atoms. “Ring distortion” indicates that 

carbon atoms are moving in or out of the phenyl-ring plane together, but asynchronously 

with the deuterium atoms. Calculations of the normal modes indicate the induced dipole 

moments are directed predominantly perpendicular to the z-axis. Exceptions to this rule 

include the calculated B1 modes for biphenyl and deuterated biphenyl, at 1116.1 cm-1 

(Table III) and 784.3 cm-1 (Table IV), respectively. In Fig. 23 we compare the 

experimental and theoretical frequencies for the IR-modes that become IR-inactive upon 

planarization of the molecule for both hydrogenated and deuterated biphenyl. The 

experimental and calculated frequencies match very well, as seen from Fig. 23. The 

uncertainty in our calculations is estimated to be within 5% error. 

 

6.1.1.4. Conclusions. 

 

 In conclusion, it was found that biphenyl undergoes a phase transition, in which 

the molecules flatten under high pressure. This flattening results in the disappearance of 

certain IR peaks. The numerical and group-theory analysis matches the experimental data 

very well. The majority of vibrational modes that become IR-inactive upon planarization 

of the molecule, have their dipole moments induced in the direction perpendicular to the 

main axis of the twisted molecule. 
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Figure 23. Comparison between experimental and calculated frequencies for biphenyl 

and deuterated biphenyl modes that become IR-inactive upon phase transition. 
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6.1.2. P-terphenyl. 

 

6.1.2.1. Experimental results. 

 

In this section, high-pressure IR spectroscopy experiments on p-terphenyl are 

discussed. Some of these results are also presented in Ref. 94. 

In contrast to biphenyl, the conformation of p-terphenyl is not known with any 

degree of certainty. In its twisted conformation, the p-terphenyl molecule can be 

characterized by two angles of twist, associated with the two outer phenyl rings. If both 

angles are of the same sign and have the same value, then the molecule has C2h 

symmetry. If the twist angles have different signs, then the symmetry group is D2. If the 

twist angles have slightly different values, then the symmetry group is C2. We will denote 

such low-symmetry configurations 2C′  and 2C ′′ , if molecule resembles that of C2h or D2 

symmetry, respectively.  

There is also a possibility of having one outer ring twisted whereas other rings 

remain in the same plane. In this case, the molecule also belongs to the C2 group. These 

configurations are illustrated in Fig. 24. 

As in the case of biphenyl, both hydrogenated p-terphenyl ( ), later referred 

to simply as p-terphenyl, and deuterated p-terphenyl ( ) were investigated. The IR 

spectra for p-terphenyl are shown in Fig. 25 and spectra for deuterated p-terphenyl are 

shown in Fig. 26. Spectra were taken with resolution 2 cm

1418HC

1418DC

-1. The displayed frequency 

range corresponds to hydrogen bending modes. These bending modes are in- and out-of-

plane modes, as observed in biphenyl. When pressure is raised above a critical value, se- 
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Figure 24. Three possible isomers of p-terphenyl molecule in the twisted conformation. 
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veral IR absorption peaks abruptly disappear from the spectrum. No hysteresis was 

observed in our experiments. 

The pressure-dependent shifts of several out-of-plane hydrogen bending modes in 

p-terphenyl are plotted in Fig. 27. Again, uncertainties in data are within points’ size. The 

frequencies shift discontinuously for certain peaks; namely, the peaks at 567, 573, and 

912 cm-1. This observation, together with the disappearance of other peaks, indicates the 

existence of a phase transition. The transition pressure lies between 0.2 and 0.6 GPa, 

consistent with previous studies (Ref. 65), which determined a phase transition at 

approximately 0.5 GPa. 
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Figure 25. P-terphenyl spectra at pressures below and above phase transition. 

IR-modes, that disappear upon transition, are indicated by arrows. 
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Figure 26. Deuterated p-terphenyl spectra at pressures below and above phase transition. 

IR-modes, that disappear upon transition, are indicated by arrows. 
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Figure 27. Frequency dependence of several IR-modes on the pressure for p-terphenyl. 

 

Table V. Ground-state energies of p-terphenyl molecules in different conformations 

relative to the planar conformation. 

Energy, meV 

Basis set 
Symmetry 

group 
6-31+G(d) 6-311+G(d) 6-311++G(2d,p)  6-311++G(2df,2dp) 

Planar, D2h 0 0 0 0 

Twisted, C2h -163.4 -175.6 -178.7 -146.6 

Twisted, D2 -162.4 -174.2 -176.2 -145.4 
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6.1.2.2. Numerical calculations. 

 

Previous theoretical studies have investigated the conformation of the p-terphenyl 

molecule (Ref. 58, 91). We performed ab initio calculations of p-terphenyl using the 

Gaussian98 software package (Ref. 9). All calculations were done using the same method 

as in the case of biphenyl. We used two basis sets, 6-31+G(d) and 6-311+G(d), to obtain 

vibrational frequencies for the p-terphenyl molecule in different configurations. In 

addition, two higher basis sets, 6-311++G(2d,p) and 6-311++G(2df,2dp) were used to 

check the consistency of the ground-state energy calculations. A summary of the energy 

calculations is given in Table V. It is clear that the C2h isomer is consistently more 

energetically favorable than the D2 isomer. This result is consistent with previous x-ray 

diffraction experiments, which indicated that the molecules in a p-terphenyl crystal have 

C2h symmetry at low temperatures (Ref. 47). The calculated energy difference, however, 

is only ~1 meV/molecule. Our results contradict those obtained in Ref. 58, where it was 

suggested that the D2 isomer has a lower energy than the C2h isomer. One possible reason 

for such a discrepancy is that in Ref. 58, a semiempirical method was used (CS-INDO), 

which is usually less accurate than ab initio methods. Finally, we note that the C2 

structure was unstable - during our calculations it relaxed to the 2C′  conformation. 
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6.1.2.3. Group theory. 

 

Similar to the analysis made for biphenyl, we applied group theory to analyze the 

normal modes of p-terphenyl. This analysis was performed for the three possible 

conformations shown in Fig. 24, as well as the planar conformation. 

In the case of D2 symmetry, the vibrational modes are classified as follows: 

Γ = 22A ⊕ 20B1 ⊕ 24B2 ⊕24B3 .      

Modes belonging to the B1, B2, or B3 irreducible representations are IR-active, for a total 

of 68 IR-active modes. For the C2h group, the vibrational modes are classified as: 

Γ = 21Ag⊕ 24Bg⊕ 21Au⊕ 24Bu   . 

Here, only modes belonging to either Au or Bu representations are IR-active, yielding a 

total of 45 IR-active modes. For the molecule belonging to C2 point group, the modes are 

given by: 

Γ = 42A⊕ 48B  . 

In this case, all modes are IR-active. For the planar configuration, p-terphenyl belongs to 

the D2h point group. The vibrational modes are given by: 

 Γ = 16Ag ⊕ 6Au ⊕ 5B1g ⊕ 15B2g ⊕ 9B3g ⊕ 15B1u ⊕ 9B2u ⊕15B3u  . 

Modes belonging to the B1u, B2u, or B3u irreducible representations are IR-active, for a 

total of 39 IR-active modes. 

 Upon planarization, certain IR-active peaks become IR-forbidden. We would 

expect to see 6 modes disappear from the spectrum if p-terphenyl belongs to the C2h 

group, 29 modes if it belongs to the D2 group, and 51 modes if the molecule has C2 

symmetry. These “disappearing peaks” comprise a special subset of vibrational modes. In 
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the following discussion, we restrict the analysis to those modes that lose IR activity 

upon planarization. 

 

6.1.2.4. Comparison between theory and experiment. 

 

In Figure 28 we present all modes that are IR-inactive in the planar conformation, 

but become active in the C2h and 2C′  twisted conformations, along with the experimental 

results. The calculations showed that some modes, which are IR-active according to 

group theory, have essentially zero intensity. We then looked at the  isomer, since it 

turned out it deviates from C

2C′

2h symmetry only slightly, as the difference in the twist 

angles of outer rings is only 0.03°. There is also a distortion of phenyl rings which makes 

them non-planar, but this distortion is also very small—the C-C-C-C dihedral angle is 

0.04°. Results are also presented for the D2 isomer. The results for  (not shown) are 

nearly identical to those for D

2C ′′

2. 

 In Fig. 28 it is apparent that the most intense calculated peak is at 710 cm-1, 

consistent with experiment. For the D2 calculations there is also an intense peak at 741 

cm-1. In the experimental spectrum, however, there is no disappearing peak near 741 cm-1
. 

This observation, along with the ground state energy calculations, allows us to conclude 

that the p-terphenyl structure is 2C′ . Since the 2C′  conformation deviates from the C2h 

conformation only slightly, it is surprising that this small perturbation causes large 

increases in the intensities of certain IR peaks. In Fig. 28, for example, the IR mode at 

710 cm-1 has zero intensity for the C2h conformation, but it is very intense for the 2C′  

conformation. 
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Figure 28 Comparison between experimental and calculated frequencies for p-terphenyl  

modes that become IR-inactive upon phase transition for different possible twisted 

conformations. 
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Figure 29 Comparison between experimental and calculated frequencies for deuterated p-

terphenyl  modes that become IR-inactive upon phase transition for different possible 

twisted conformations. 
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 We have also performed calculations for deuterated p-terphenyl. The results for 

calculated and experimental IR modes are shown in Fig. 29. It is again seen that the 2C′  

conformation yields the best match between theory and experiment. For the D2 

conformation, however, there is an intense peak, calculated at a frequency of 550 cm-1. 

Since experiments gave no evidence of such a strong peak in the spectrum, this 

calculation provides additional evidence that the D2 configuration is incorrect. 

It should be noted that the experimental peaks show fine structure that is not 

reproduced by the calculations. In 900-1000 cm-1 region (Fig. 28), for example, more 

peaks were observed in p-terphenyl than the calculations predicted. It is possible that this 

is due to Davydov splitting, which occurs when there is more than one molecule per unit 

cell. In p-terphenyl, there are two molecules per unit cell in the high-pressure phase and 

four molecules per unit cell in the low-pressure phase, where Ci is the site symmetry in 

both phases (Ref. 57). This causes the number of active modes to double. Of course, 

some modes may be very closely spaced and not resolved in our experiments. 

 

6.1.2.5. Conclusions. 

 

In conclusion, experiments on the vibrational properties of p-terphenyl showed 

that these molecules flatten under pressure, resulting in the disappearance of specific IR 

peaks. Using numerical calculations, we were able to evaluate the frequencies of the 

molecular vibrations and determine the structure of the molecule in its twisted 

conformation. The close correspondence between the calculated and experimental spectra 

indicates that in the twisted conformation, the central ring is rotated around C-C bond 
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relative to the plane of two other rings. This molecule has C2 symmetry, as a result of a 

slight deviation from C2h symmetry. Additional experiments and calculations on 

deuterated terphenyl support these conclusions. 

 

6.1.3. P-quaterphenyl. 

 

6.1.3.1. Experimental results 

 

 In this section, high-pressure IR spectroscopy experiments on biphenyl are 

discussed. Some of these results have been published in Ref. 95. 

 P-quaterphenyl is the next in the family of polyphenyl molecules. It has four 

phenyl rings and it is known to undergo a structural phase transition as well. Like 

biphenyl, p-quaterphenyl in its twisted conformation belongs to the D2 point group of 

symmetry, i.e. the molecule loses its center of symmetry upon transition. It is known 

from x-ray diffraction studies96 that in the twisted conformation the inner phenyl rings are 

at 23° to each other, and the angle between inner and outer rings is 17°. A picture of the 

molecule is shown in Fig. 30 

 Using the experimental setup described previously, we obtained the IR spectra of 

p-quaterphenyl at various pressure at liquid helium temperatures. Spectra were obtained 

with resolution 2 cm-1. Two of those spectra, taken at pressures 0.7 and 1.9 GPa, are 

shown in Fig. 31. It is again evident, that certain IR modes disappear from the spectrum 

at high pressures. In Fig. 32(a) we plotted the frequency dependence for three peaks in 

the range 840-870 cm-1. One mode disappears, while two other modes exhibit a 
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discontinuity in the slope of the frequency versus pressure plots. This is an indication of 

the phase transition. In Fig. 32(b) we provide further evidence for the presence of a phase 

transition. In this plot the area of the peak at 864 cm-1 was normalized with respect to the 

area of the peak at 860 cm-1 and plotted as a function of pressure. It is seen that the 

normalized area is zero within experimental uncertainty after the phase transition. The 

increase in the normalized area before the phase transition is due to the decrease in the 

area of the peak at 860 cm-1. 

 

6.1.3.2. Group theory. 

 

 Group-theoretical analysis of the vibrational modes of p-quaterphenyl yields the 

following results 

321vibr B32B32B27A29 ⊕⊕⊕=Γ   

for the twisted conformation of the molecule. Modes that belong to B1, B2, and B3 

representations are IR-active. For the planar conformation we have: 

u3u2u1

g3g2g1ugvibr

B12B20B20

B20B12B7A8A21

⊕⊕⊕

⊕⊕⊕⊕=Γ
 . 

Here the modes belonging to B1u, B2u, and B3u representations are IR-active. Thus in the 

planar conformation there are 52 IR-active modes and there are 91 IR-active modes in the 

twisted conformation. Therefore, some IR absorption peaks should disappear upon 

transition from the twisted to the planar conformation, in agreement with our 

observations. 
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Figure 30. P-quaterphenyl molecule structure in the planar and twisted conformation. 
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Figure 31. P-quaterphenyl spectra at pressures below and above phase transition. 

IR-modes, that disappear upon transition, are indicated by arrows. 
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Fig. 32. Frequency dependence of several IR-modes on the pressure for p-

quaterphenyl and normalized area dependence on the pressure for an IR-mode that 

become IR-inactive upon phase transition for p-quaterphenyl molecule. 
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The reason that we do not observe 39 disappearing peaks is probably due to the 

fact that some modes may be too weak to be observed, and others may be not resolved 

from neighboring peaks. In the 600-900 cm-1 region, which corresponds to the hydrogen 

out-of-plane bending modes, we observe five disappearing peaks. According to the 

group-theory analysis (not shown) there will be 9 IR modes, which disappear from the 

spectrum. But since four of them belong to B1 representation and have the dipole 

moments induced to be very small, they may be too weak to be either resolved or 

detected. Thus we are left with five modes belonging to the B3 representation, which 

become of B3g representation and, therefore, lose IR-activity upon planarization of the 

molecule. In Fig. 34 we presented comparison between experimental and calculated 

frequencies of the modes that become IR-inactive upon the phase transition. The 

agreement is not as good as it was for biphenyl. It tends to become worse with the 

increase in the molecule size. The theory though also predicts five modes in the range 

from 600 to 900 cm-1 to disappear upon planarization of p-quaterphenyl molecule. 

 

6.1.3.3. Conclusions. 

 

 In conclusion, the second-order phase transition was observed in p-quaterphenyl, 

as was for biphenyl and p-terphenyl. The critical pressure is about 0.9 GPa. The molecule 

becomes planar upon such a transition, which results in the disappearance of several IR 

peaks from the spectrum. Spectra are reproducible and no hysteresis behavior was found. 
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Figure 33. Critical pressure as a function of the number of phenyl rings. 
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Figure 34. Comparison between experimental and calculated frequencies for p-

quaterphenyl  modes that become IR-inactive upon phase transition. 
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In Fig. 33 we give the critical pressure as a function of the number of phenyl rings 

in the conjugated molecule. The increase in critical pressure is explained by the increase 

in repulsion between hydrogen atoms, which tends to twist the molecule. Critical pressure 

values were taken from Ref. 36 and 89 for biphenyl, Ref. 65 for p-terphenyl, Ref. 95 for 

p-quaterphenyl, and Ref. 97 for p-hexaphenyl. 

 

6.2. Surface-enhanced Infrared (SEIRS) and 

Raman (SERS) Spectroscopy. 

 

 In the previous chapters, high-pressure research on bulk solids was described. In 

order to investigate the effect of pressure on nanoscale systems, we have performed 

experiments on thin organic films. The eventual goal of this research is to systematically 

investigate pressure phenomena on materials, from a monolayer to bulk sizes. 

 To obtain sufficient IR absorption from nm-thick films, it is necessary to use 

surface-enhanced infrared absorption (SEIRA). In this chapter, previous work on SEIRA 

and self-assembled monolayers are described. Preliminary results on the high-pressure IR 

spectroscopy of nm-thick films are presented. 

 

6.2.1. General description of the method. 

 

 The phenomenon of the enhancement of radiation absorption by molecules near 

metallic layers has been observed more than two decades ago98. This phenomenon was 
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called surface-enhanced infrared absorption (SEIRA) and has become a very powerful 

method for studying chemical contaminants and molecular monolayers. Substantial 

research effort has been made to study SEIRA. Among the organic chemical compounds 

the most studied include p-nitrothiophenol99,100, disulfide and diselenide molecules101, 

dichalogenide molecules102, and p-nitrobenzoic acid103, ,104 105. Inorganic compound have 

also been studied by this technique106,107. In all these studies it has been found that the IR-

absorption greatly (103-104 times) increases for certain IR-modes if the molecule is 

located near the metallic layer. The metals that show the most prominent enhancement 

are silver (Ag), lead (Pb), platinum (Pt), gold (Au), and copper (Cu). Not all modes are 

enhanced equally, which indicate the selective character of this process. A detailed 

review of the SEIRA can be found in Ref. 108. 

 It is now generally accepted that there are three major mechanisms that contribute 

to the total enhancement: electromagnetic, chemical, and orientational mechanisms. The 

orientational mechanism is the simplest and is due to the fact that the absorption of light 

is proportional to , where θ2cos θ  is the angle between the dipole moment derivative  

with respect to normal coordinate and the electric field of the incident radiation. Since the 

space average of  is 1/3, the orientational mechanism can provide an enhancement 

by a factor of three at most. The chemical mechanism of enhancement involves the 

chemical interaction between the molecule and the metal surface. It is known that 

chemisorbed molecules absorb stronger than physisorbed ones. It is believed that the 

charge transfer from the metal to the molecule contributes to enhancement, and some 

experiments seem to support this theory

θ2cos

109, ,110 111. 
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 The electromagnetic mechanism of IR-absorption enhancement has been very 

extensively studied from both experimental and theoretical point of 

view112, , , , , , , ,113 114 115 116 117 118 119 120. It is now generally accepted that the excitation of 

plasmons in metal and their coupling with molecular vibrations is the main mechanism 

for the electromagnetic enhancement of IR- and Raman signal. The enhancement greatly 

depends on the metal surface morphology121, which indicates that the surface structure is 

the important factor in achieving larger enhancements. Below we consider the 

electromagnetic mechanism in more detail, following the review given in Ref. 120. 

 

6.2.2. Electromagnetic (EM) mechanism of surface-enhanced absorption. 

 

 If electromagnetic radiation impinges onto the metal surface, the local field near 

the surface is different from the field far away from it. In practice, the metal surface is 

usually rough and the roughness size varies from nanometers to microns. We are 

interested in the metals deposited from the vapor or by a sputtering process, where the 

size of the metal particles is 1-100 nm. In this case the particle size is much smaller than 

the wavelength of radiation. In this case the electric field can be assumed to be uniform, 

but varying in time. The retardation effects can all be neglected and the polarization of 

the spherical metal particle is determined by a well-known result: 

EP
rr

ε+ε
ε−ε

ε=
2

3
met

met  ,      (113) 

where  and  are dielectric constants of surrounding medium and the metal, 

respectively. The case of non-spherical particles will be addressed later. 

ε metε
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 The polarization given by Eq. (113) corresponds to the dipole moment 

Pp
rr 3a

3
4

π= , where a is the radius of the sphere. The electric dipole field is then given by: 
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Here  is the unit polarization vector of the incident radiation (not to be confused with 

the polarization of the metal particle from Eq. (113)!), r is the radial distance from the 

center of the spherical particle, 

ê

r
ˆ rn

r

=  is the unit vector in the direction of rr , and k is the 

wave vector of the incident radiation. 

 Eq. (114) already enables us to understand the mechanism of surface-

enhancement. If the dielectric constant of the metal has small imaginary part and real part 

equal to -2ε, the electric field given by Eq. (114) becomes very large. The absorption and 

scattering intensities are proportional to the square of the electric field and thus become 

very large too. The total electric field is the sum of the incident and scattered fields and 

can be written as: 
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where 
ε+ε

ε−ε
επ=η

2
a4

met

met3  and E0 is the amplitude of the incident electric field. 

 The more realistic model of the experiments on surface-enhanced spectroscopy is 

the collection of spheres coated with the layer of material under investigation. As the 

first-order approximation one can assume that all spheres are of the same radius and the 

spacing between spheres is much larger than the sphere radius. In this case each sphere 

can be considered independently and the problem reduces to the two-layered sphere in 
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the uniform electric field. The problem is exactly solvable and the final result gives the 

electric field outside the sphere in the form: 
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where R1 is the radius of the outer coating layer surface, r is the radius-vector, and ε  is 

the so-called effective medium dielectric constant. The value of ε  is given by: 

( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
ε−ε−ε+ε

ε−ε
+ε=ε

1212

12
1 f2

f31       (117) 

where  and  are dielectric constants of the coating layer and the inner spherical 

particle, respectively, 

1ε 2ε

V
V

R
Rf sphere

3
1

3
2 ==  is the filling factor, and R2 is the inner sphere 

radius. The Eq. (117) coincides with the famous result of Maxwell-Garnett theory122 

(MGT) for small spherical particles with dielectric constant 2ε  embedded in the medium 

with dielectric constant . The condition in MGT that the spheres can be considered 

independently requires the filling factor to be small. In our case the spacing between 

spherical particles must be large compared to their size. In this case the influence of one 

sphere onto another can be neglected. 

1ε

 Since the composite medium was treated as the homogeneous medium with 

effective dielectric constant, the theory described is effective medium theory (EMT). 

Another EMT is the Bruggeman theory123. More detailed review can be found in Ref. 

108, 114. 

 Alternative theories have also been developed124, ,111,118125 . In those theories the 

metal particles and the molecules are replaced by polarizable dipoles  The magnitudes 

of the dipoles are determined via the following coupled dipoles (CD) equation: 

ipr
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Here  is the polarizability of the iiα th dipole and Mij describes the interaction between the 

ith and jth dipoles. The value of Mij is given by the second term in parentheses in Eq. (115) 

where the vector r  must be replaced by 
r

ijr
r , the vector from the ith to jth dipole position. 

The Eq. (118) must be solved self-consistently. Recent calculations showed good 

agreement between experimental and computed data, as well as consistency among 

different theories126,118,119,120. 

 All models considered above have implicitly assumed that the particles are big 

enough to be treated as macroscopic medium with dielectric constant determined for such 

a medium. It is known, however, that the dielectric constant becomes size dependent for 

very small particles. In fact, the size dependence manifests itself when the size of the 

particle becomes comparable to the mean free path of conducting electrons. This changes 

the plasmon width and, for spherical particles, can be described by the following relation : 

R
vA F

b +γ=γ  ,        (119) 

where  is Fermi velocity and R is the radius of the sphere. Coefficient A in Eq. (119) is 

equal to 1 in classical theory and ranges from 0.76 to 1.16 in various quantum-

mechanical models

Fv

127,128. The detailed review on this subject can be found elsewhere . 
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6.3. Thin films of organic molecules under pressure. 
 

 Thin molecular and atomic films and self-assembled monolayers (SAM) have 

recently become a subject of intensive scientific research. They have been studied 

experimentally by atomic force microscopy129, ,130 131 (AFM), scanning tunneling 

microscopy132, , ,133 134 135 (STM), X-ray diffraction136, , ,137 138 139, transmission electron 

microscopy , x-ray photoelectron spectroscopy140,141 (XPS), sum-frequency generation142 

(SFG), surface second harmonic generation143,144 (SSHG), Brewster angle microscopy145, 

ellipsometry146,140,141, Raman scattering147, infrared (IR) 

spectroscopy133,134,135, , , , ,141148 149 150 151 , and theoretically by molecular dynamics 

simulations152, , ,153 154 155.  

It is known that thiol molecules form layered structures on different substrates 

such as metal surfaces, silicon, and glasses. The most studied are alkenethiol, 

benzenethiol, thiophenol and some others. The most frequently used substrate is gold 

(Au). The alkenethiol molecules deposited on Au(111) can form ( ) o30R33 ×  or 11×  

structures. The application of surface pressure drives the transition  and hysteresis was 

observed. The ( ) o30R33 ×  structure persists up to a load of 280 nN and then 11×  

structure appears. Upon decreasing the load the ( ) o30R33 ×  structure reappears only 

at a load about 100 nN. The global phase diagram of n-alkenethiol SAM has been 

investigated  and two regimes have been found: long (n>14) and short ( ) chain-

length regimes. Different phases are characterized by the tilt direction and two-

dimensional periodicity. The tilt angle was found to be about 30-35° from normal to the 

surface

12n ≤

136,148. The molecular dynamics simulations  showed that there are two phase 
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transitions in SAM of alkylthiol molecules: one is a change in tilt direction from nearest 

neighbor (NN) to next-nearest neighbor (NNN) and another is a transition from NNN tilt 

to an orientationally disordered state. A similar transition was found in the SAM of 

azobenzene derivative, 4-octyl- 4′ -(carboxytrimethyleneoxy)azobenzene (C8AzoC3) . The 

low-pressure phase has the tilt toward NN whereas high-pressure phase has the tilt 

toward NNN. It was found that the tilt angle does not change much with pressure. 

 Pyridine molecules on Au(111) form various structures with flat-lying, tilted, and 

vertically standing molecules . In this case the tilt angle varies from 20 to 45° and 

increases as the applied surface potential or surface concentration increases. The same 

group of researchers studied 2, 2 -bypyridine (bpy) SAM  and found two phase transitions 

as applied potential increases. One transition is from flat to vertically oriented molecules 

and another one is from 

′

343×  zigzag to 324×  commensurate structure. 

 Another large group of thiol molecules, which form SAMs, are aromatic 

molecules. The simplest molecule is benzenethiol. It forms a well-ordered monolayer 

with a ( ) o9.13R1313 ×  commensurate structure . As shown by STM and surface-

enhanced infrared absorption (SEIRA), the phenyl ring is tilted about 30° from surface 

normal. Also p-biphenyl mercaptan (BPM) and p-terphenyl mercaptan (TPM) have been 

studied and it was determined that they form stable monolayers with reproducible contact 

angles . The structure of these monolayers is ( ) o30R33 ×  and molecules are almost 

perpendicular to substrate surface. 

 The pressure effect on thin films has been also investigated. In Ref. 147 it was 

found that in the polydiacetylene the phonon frequencies increase, but the Raman 

frequencies shift to the red part of the spectrum. This behavior was attributed to the 
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increase of conjugation length with pressure. In 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) the surface pressure application leads to the increase in 

frequency of C-H vibrations and in the signal intensity . These findings, as will be seen 

below, are consistent with our own observations. 

 

6.4. Current research. 

 

6.4.1. Film preparation. 

 

 A silver film was deposited onto the culet surface of the diamonds in the DAC by 

the vapor deposition method. The scheme of the deposition system is shown on Fig. 35. 

The DAC was placed into the deposition chamber and the chamber was evacuated to 

about 10-7-10-9 Torr. First, the roughing pump brought pressure down to 100 Torr. Then 

the cryopump was opened to the ambient atmosphere and heated up to 500° C. After 

several hours of heating it was isolated from the atmosphere and cooled down to liquid 

nitrogen temperature (77 K). When thermal equilibrium was reached, the valve, 

connecting the cryopump with the deposition chamber, was opened and the pressure 

decreased to a level of ~1 mTorr. The final stage involves the ion pump evacuating the 

whole chamber. The valve between the ion pump and the chamber was slowly opened 

and the pressure in the ion pump was monitored and not allowed to exceed 10-5 Torr. The 

filaments of the ion pump operated with ~50 A current in continuous or 2-5 minute cycle 

mode. It usually takes 1-2 hours for the ion pump to bring the pressure down to the values 

mentioned above. During the operation the ion pump must be cooled by a continuous 
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water flow. The deposition current can vary in the range 175-250 A and the rate of silver 

deposition varies in a wide range from 0.1 to 100 Å/s. A manually operated shutter 

allows one to control the deposition time and, thus, the film thickness. In order to monitor 

the thickness correctly the deposition rate should not exceed 5 Å/s. However, the higher 

the deposition rate, the rougher the film surface is, which is important for the surface 

enhanced spectroscopy. 

 For the purpose of SEIRA measurements the silver film thickness must be small 

enough in order not to block the infrared light passing through the diamonds. At the same 

time the film must provide sufficient enhancement of the IR absorption so that the IR 

detector receives sufficient signal. Usually the film thickness is about 10 nm for good 

enhancement, but we have used a 5 nm thick film to get a good signal to noise ratio. 

Since the enhancement is greater for a film with rougher surface profile, we chose a 

deposition rate of about 5 Å/s. 

Thin film of p-NTP has been casted from the solution onto the silver layer 

covering diamond surface. This technique of organic thin film preparation has been 

described elsewhere . In order to protect the epoxy, which glues diamonds to the backing 

plates, from the chemical solution we put additional layer of epoxy after silver film 

deposition. The AFM images of p-NTP thin film have been taken after a series of high-

pressure experiments (Appendix D). They showed a film of about 30 nm thick (Fig. 38, 

39). Large white features in the image are dust particles and small ruby chunks, which are 

inevitably introduced in the loading process. 
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Figure 35. The schematic picture of the vapor deposition system used in depositing thin 

silver films onto diamond. 
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A more detailed structure could be possibly obtained by STM measurements, 

which we didn’t perform. The deposited film has been loaded with liquid nitrogen in the 

DAC with type II diamonds and FT-IR spectra have been taken. The pressure was 

calibrated using ruby fluorescence method. For this purpose the tiny ruby chip was placed 

on top of the film. The introduction of the ruby chip inevitably damages the thin film. In 

our case, however, the size of the chip was negligible compared to the sample size. Thus 

no significant damage to the film has been done. 

 

6.4.2. Results. 

 

 Typical spectra of the thin p-NTP film are shown in Fig. 36. The broad peak at 

1340 cm-1 corresponds to a symmetric stretch of NO2 group in the p-NTP molecule. 

Spectra have been obtained at the room temperature with an MCT detector. The spectral 

resolution was 8 cm-1. In the Fig. 37 we present peak frequency as a function of pressure. 

The frequency shifts up with pressure, though the apparent shift is smaller than the 

resolution. Thus no certain conclusions can be drawn about its behavior now and a more 

sensitive technique is required. Nevertheless, the pressure seems to affect the film 

significantly enough so that IR-spectroscopy can serve as a probe of film behavior under 

high pressures. Upon decrease of the pressure the peak intensity went down, which made 

it hard to detect the peak at pressures between 1 and than 5 GPa. But then the intensity is 

increased at the pressures below 1 GPa. Whether it is due to a phase transition in the 

nitrogen, which occurs at 1.9 GPa, is currently not known. 
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Figure 36. Typical IR spectra of p-NTP film at different pressures. 
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Figure 37. Pressure dependence of NO2 symmetrical stretch mode 

frequency in p-NTP film. 
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Overall, application of the pressure to thin films seems to influence the vibrational 

frequencies of the molecules composing the film and can serve as a good probe of the 

film properties. Much of the research has to be done in this area and a lot of discoveries 

are still waiting to be made. 

 

7. Summary of results 

 

In this work the following results have been obtained: 

• High pressure can be applied to the study of organic solids and thin films of 

organic materials; 

• Biphenyl, p-terphenyl, and p-quaterphenyl all undergo structural phase transitions 

when pressure increases above certain critical value; 

• Several IR modes become inactive upon this transition; 

• The critical pressure increases with the number of phenyl rings; 

• Among two possible twisted conformations of p-terphenyl, the conformation 

belonging to the C2h symmetry is the most stable; 

• Numerical ab initio calculations show very good agreement with experiment; 

• Thin films of organic molecules can be successfully studied by means of surface-

enhanced IR absorption method. High pressure affects the thin film properties; 

Most of these results have been published in peer-reviewed journals and presented at 

various meetings. 
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8. Future work directions 

 

 A new branch of research in physics and chemistry is connected with the properties of 

self-assembled monolayers. A monolayer provides a model system to study materials 

properties on the nanometer length scale. Those materials should exhibit interesting 

mechanical, optical and other physical properties. Quasi-two-dimensional systems can 

lead to discoveries of new phenomena. Pressure-induced phase transitions in such 

systems might be a good test for existing theoretical models, such as Ising or Potts 

models, which have been successfully applied to various surface phenomena156, and a 

way to develop new, more sophisticated models to describe behavior of two-dimensional 

systems. Pressure in this case can also be a very powerful tool to probe atomic 

interactions between monolayer molecules. I have been studying pressure effects on p-

nitrothiophenol monolayers grown on metallic substrates by means of infrared (IR) 

spectroscopy. There exists several surface characterization techniques, such as scanning 

tunneling microscopy (STM), atomic force microscopy (AFM), and surface second 

harmonic generation (SSHG), to study the effects of high pressure. 

High pressure can be a very useful characterization tool for the investigation of 

the thin films. By systematically increasing the thickness of the film, one can probe bulk 

vs. surface properties of a material. By monitoring changes in the material’s response to 

applied pressure with increasing thickness, one can find out when this material starts 

exhibiting bulk behavior. IR spectroscopy can provide a direct indication to some 

changes within the material. The research in this area can lead to a deeper understanding 

of the structure of different substances and may result in discoveries of novel materials. 
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APPENDIX A. 

 

Absorption of light. Quantum-mechanical treatment. 

 

 Let us consider a quantum-mechanical system with an energy spectrum 

. If a perturbation K,,, 21nE n = ( )tV  is acting on the system, then the probability for the 

system to go from the initial state i  to some final state f  is given by the expression4: 

( )
2

ti
2fi dtitVf1P fi∫

+∞

∞−

ω= e
h

      (A1) 

where 
h

if
fi

EE −
=ω . The perturbation is assumed to be zero at . If the 

perturbation is turned on at t=0 and is periodic with frequency 

±∞→t

ω , , then 

the probability of the transition is given by: 

( ) ti
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( ) ( ω−−δ
π

= h
h
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fi0fi EEtV2P )     (A2) 

The probability is proportional to the time. But the transition rate, i.e. the probability per 

second, is independent of time and is equal to: 

( ) ( ω−−δ
π

= h
h

if
2

fi0fi EEV2r )    (A3) 

 In the case of light absorption, the system is interacting with a plane 

electromagnetic wave. The Hamiltonian of the system contains the term pA rr
⋅−

c
1 , where 

p
r

 is the momentum operator, as the perturbation. 

 If we take into account that xkεA
rrr

⋅= i
0A eˆ , we obtain for the transition rate: 
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When the wavelength of the incident light is much greater than the size of the system, the 

exponential in Eq. (A4) can be replaced by 1. This is the so-called electric dipole (or E1) 

approximation. Assuming that the initial state is the ground state, and using the 

commutation relation [ 0Hi rp rr
−= , where H0 is the unperturbed Hamiltonian, one obtains 

for the absorption rate from the ground state: 

( ) ( ω−ωδ⋅
πω
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2
r dε

r

h
ˆ )  ,   (A5) 

where  is the dipole moment of the system. Thus the absorption rate is proportional to 

the square of the matrix element of the dipole moment. 

d
r
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APPENDIX B. 

 

Isotopic shift of the vibrational frequency of the molecule. 

 

 Let us consider the simplest case of a diatomic molecule consisting of two 

different atoms with masses  and , where superscript (0) is referred to the isotope 

type. The chemical bond between these atoms is described, in the harmonic 

approximation, by a force constant . The vibrational frequency is given by: 

)0(
1m 2m

k

( ) ( ) 1
2

1)0(
1

1
0 mm;k −−− +=µµ=ω     (B1) 

If one of the atoms is replaced by its isotope with the mass , the vibrational 

frequency changes and becomes: 

)1(
1m

( ) ( ) 1
2

1)1(
1

1
1 mm;k −−− +=µ′µ′=ω    (B2) 

The ratio of two frequencies is given by: 

( ) ( )
( ) ( ) 1

2
1)0(

1

1
2

1)1(
1

0

1

mm

mm
−−

−−

+

+
=

µ′
µ

=
ω
ω     (B3) 

It is seen from B3 that if we replace the atom with its lighter isotope ( ), the 

frequency is blue-shifted. If the isotope is heavier, the frequency will be red-shifted. 

)0(
1

)1(
1 mm <

 The most interesting case is when one of the atoms is hydrogen. The hydrogen 

atom is much more lighter that almost any other atom and in this case  the ratio 
2

)0(
1

m
m  

is small. In the case when hydrogen is replaced by deuterium, the ratio of the frequencies 

is approximately equal to: 
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2
1

m
m

)1(
1

)0(
1

0

1 =≈
ω
ω       (B4) 

The frequency is, therefore, red-shifted by a factor of 2 . The real shift is smaller due to 

the fact that the second atom has finite mass (correction factor, up to linear terms, is 

2m2
11+  and due to anharmonic effects. 
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APPENDIX C. 

 

Frequency distribution for the system of oscillators 

with nearest-neighbor interaction. 

 

Let us consider a chain of identical harmonic oscillators with natural frequency 

, interacting with each other. We assume free boundary conditions. The interaction 

potential will be chosen as follows: 

0ω

⎩
⎨
⎧ =−α

=
otherwise,0

1jiif,xx
V ji

ij       (C1) 

Thus we consider nearest-neighbor interaction only. The total Hamiltonian for such a 

system is given by: 

∑∑ α+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ω
+=

= ij
ji

N

1i

2
i

2
0

2
i xx

2
xm

m2
p

H      (C2) 

where symbol ij  indicates the sum over nearest neighbors. Using Hamilton’s equations 

of motion 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
∂

=

∂
∂

−=

i
i

i
i

p
Hx

x
Hp

&

&

        (C3) 

one can readily obtain: 
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⎪
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α−α−ω−= +−

m
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xxxmp

i
i

1i1ii
2
0i

&

&

     (C4) 

Dot above the letter means differentiation with respect to time. From Eq. (C4) we can 

obtain N second-order coupled differential equations: 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

α−ω−=

α−α−ω−=

α−α−ω−=

α−ω−=

−

−−−

1NN
2
0N

N2N1N
2
01N

312
2
02

21
2
01

xxmxm

xxxmxm
.........................................

xxxmxm

xxmxm

&&

&&

&&

&&

     (C5) 

The standard way to solve this problem is to find all normal modes of the system. We 

assume the solution to have a form  and, upon substitution in Eq. (C5), we 

get: 

ti
0ii ex)t(x ω−=

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=+λ
=++λ

=++λ
=+λ

−

−−

0xx
0xxx

...........................
0xxx

0xx

1NN

2NN1N

312

21

      (C6) 

Here 
α

ω−ω
=λ

)(m 22
0 . System (C6) has nontrivial solution if its determinant is zero. 

Therefore we obtain equation for λ : 

0)(Det N =Λ         (C7) 

where 
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1100
01100
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0011
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This determinant can be expanded over its first row (or column) as follows: 

)B(Det)(Det)(Det 1N1NN −− −Λλ=Λ      (C9) 

1NB −  is the following matrix: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎤

⎢
⎢
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λ
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λ

λ
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.......
0.0110
0..010
0...011

B 1N     (C10) 

It is easy seen that determinant of is equal to determinant of . Thus we 

obtained the recurrency relation onto determinant of 

1NB − 2N−Λ

NΛ : 

)(Det)(Det)(Det 2N1NN −− Λ−Λλ=Λ      (C11) 

 The Eq. (C11) is satisfied by the Chebyshev polynomials of the second kind 

⎟
⎠
⎞

⎜
⎝
⎛ λ

2
U N . Therefore characteristic frequencies of the chain of N identical harmonic 

oscillators are given by roots of the appropriate Chebyshev polynomial. 

0
2

U N =⎟
⎠
⎞

⎜
⎝
⎛ λ         (C12) 
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It is well known fact that these polynomials have simple real roots, lying in the interval 

. Thus our system has N distinct frequencies, ranging from [ 1;1− ]
m
22

0
α

−ω  to  

m
22

0
α

+ω . In fact, there is a short analytical form for frequencies of the normal modes 

of the system. Chebyshev polynomial  can be represented as follows: NU

( ) [ ]
θ

θ+
=θ

sin
)1N(sincosU N       (C13) 

It is zero when the numerator is zero and denominator is not. One can easily obtain: 

N...1k,
1N

k
k =

+
π

=θ        (C14) 

It follows from Eq. (C14) that 

⎟
⎠
⎞

⎜
⎝
⎛

+
π

=λ
1N

kcos2k        (C15) 

Finally, for characteristic frequencies of the system we have: 

⎟
⎠
⎞

⎜
⎝
⎛

+
πα

−ω=ω
1N

kcos
m
22

0k       (C16) 

In the case of weak coupling the width of distribution of frequencies is of the order of 

2
0m

2
ω

α . 

 If the coupling  is such that α 2
0m

2 ω=α , Eq. (C16) becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

π
ω=ω

)1N(2
ksin2 0k  ,     (C17) 

analogously to the dispersion relation for the phonons in crystal. 
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Appendix D. 

AFM images of thin film of p-NTP. 

 

 

Figure 38. AFM image of p-NTP thin film. 
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Figure 39. Section analysis of p-NTP thin film. 
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