

Experimental Demonstration Garden (XDG) at Hovander Park, Ferndale, WA

End of the year Report 2025

This Demonstration Garden at Hovander Park has been, since its inception in 2017, focused on identifying and showcasing selected university-backed horticultural research for application by home gardeners. Using the 9 priorities of WSU Master Gardener Program, ([Program Priorities Poster](#)), we have demonstrated keyhole gardens for drought conditions, a comparison of gravity vs drip irrigation systems, long term use of plastic sheet mulches and growing specialized crops in W. WA for the home gardener. Our core values include: a focus on soil health, no-till, no soil compression, cover cropping, crop rotation and diversity, reducing synthetic inputs, water conservation, composting and integrated pest management.

Contributing to specialized crop research and best plant practices in W. WA has been a source of growth and joy for us. For the past 3 years, the Experimental Demonstration Garden has provided field data and worked with WSU NWREC in Skagit. Our conjoint specialized crops include seedless watermelon, sweet potatoes, and *Camellia Sinensis* (tea plant). (see our previous end of year reports: [Hovander Gardens - Whatcom County Master Gardeners and Master Gardeners Foundation](#))

Here is a summary of our activities in the XDG garden for 2025:

1. Sweet Potato crop

- a. The Team chose sweet potatoes as our demonstration crop for 2025. It met many of our 9 Master Gardener priorities including being a local food source, crop rotation considerations and diversity. It is also attractive for the home gardener in its ease of growth and table benefits; however, it is not considered a traditional crop in the PNW.
- b. *Ipomoea batata* is a tropical plant originating in Ecuador. It is a starchy tuberous root vegetable used as a food staple throughout the world. Today North Carolina produces 60% of all US grown sweet potatoes with California, Louisiana and Mississippi following production.
- c. The Team joined PhD candidate Dr. Laura Moulton's sweet potato project supervised by Dr. Carol Miles at WSU's Skagit NWREC and benefitted from their sweet potato field days, zoom lectures, newsletters and published growing guides.

We obtained three varieties trialed at Skagit's NWREC: **Cascade** (resistant to multiple root knot nematodes), **Covington** (resistant to root knot nematode) and **Beauregard** (resistant to Fusarium wilt and root rot, Rhizopus soft rot)

- d. Skagit's NWREC field research focused on identifying "wireworm" resistant variety as that is the main pest in W. WA for Sweet Potatoes. Wireworms are the larvae of click beetles and live in the soil. They feed on seeds, roots and underground stems of plants. Therefore, sweet potatoes and gardens recently constructed from turned-over sod are at risk of wireworm damage. [Sweetpotato-report-2020-1.pdf](#)
- e. The Cascade variety was the most successful in Skagit's NWREC field trials. Originally this variety from a Charleston, SC gene/seedbank was unnamed due to less commercial need for wireworm resistance in East Coast farming. Dr. Miles, in conjunction with USDA, et al was able to successfully trial the unnamed sweet potato for its application in W. WA commercial farming. As a result, she was able to rename the *Ipomoea batatas* #94-145 to cultivar "Cascade". It is a multiple pest-resistant, rose skinned, creamy yellow fleshed, dry, and mild flavored sweet potato suitable for organic farmers and home gardeners. [USDA 'Cascade': A Multiple Pest-Resistant, Rose-skinned, Creamy Yellow-fleshed Sweetpotato in: HortScience Volume 60: Issue 10 | ASHS](#)
- f. Taking our Whatcom County climate and growing season into account, the Team focused on choosing varieties that had shortest Days To Harvest (DTH) (90-100 days), wireworm resistance and yield size. We planted separate rows of Skagit's NWREC Beauregard, Covington and Cascade, as well as a single row of a Beauregard variety obtained from a local organic grocery store.
- g. Growing tips: see workshop handout for details.
 - i. [Tips for Growing Sweet Potatoes](#)
 - ii. XDG Journal Notes:
 - 1. W. WA weather considerations: It was a good growing season overall for 2025. In the spring, we were slow to warm the soil and get air temperatures above 65, so we transplanted on our very last calculated DTH date, June 4. We spent 3 weeks prior to transplanting, raising our soil

temperatures artificially with PE mulch to 65°F. Cooler temperatures continued and our transplants struggled for the first 2 weeks. Rest assured we were told by sweet potato growers that while it is common for transplanted slips to go into shock, within 2 weeks there will be evidence of new growth with a survival rate of 90% or better. We took a risk by planting cuttings from our greenhouse sweet potatoes directly into the field and observed their initial shock. Being the nervous nelly that I am, we watched the transplants “die-off” and then restart themselves vigorously. I mean, how many of us “helicopter parent” our green beloveds? We replanted 50% of Cascade transplanted slips due to die off but the other varieties recovered as foretold without/b slip pre-rooting (or hardening off).

2. Our soil test in April revealed that we had the correct pH (5.5-6.5) for sweet potatoes and we were high in organic matter and all minerals, except for nitrogen. We also tested negative for heavy metals after years of flooding and fallout from smoke and fire abatements. To this end, we amended the soil with alfalfa meal a week before the transplant. We did not add any more soil amendments for the rest of the season. Tip: do not over fertilize with high nitrogen content amendments, especially when the roots are bulking up the last month or you may find that you are bulking your leaves and the plant canopy instead of your roots.
3. 10-gallon cloth pots were an adjunct demonstration for growing sweet potatoes and a garden perimeter barrier (to keep folk from walking on and compressing our garden soil). Cloth pots have the advantage of air pruning roots, a permeable barrier for water and easy to fill with soil. We found pots easy to heat up the soil to proper transplanting temperatures in May. We watered them via drip irrigation misters. Each pot had 1-2 transplants which provided equivalent yields and fewer root damage or disfiguration than rows. It was free from disease and damage from pests including moles/voles. We had a small paper wasp

hive trying to grow on the outside folds of the pot, but they gave up due to the misters creating a less-than-optimal environment for wasps. Harvesting the crop was as easy as tipping the pots and sorting through the soil. The pots can be cleaned, sterilized and stored for reuse. This is our second year reusing the cloth pots and we plan to use them again next year.

4. Straw bale growing for Beauregard sweet potatoes yields were disappointing for us this year. We observed that the straw bale had not broken down as much as expected at harvest and that the roots were small in number and size. Areas to improve may be more attention to prepping the bale (one week of deep watering the bale, one week adding high nitrogen fertilizer daily, followed by one more week of daily watering to get temps down to 85-90°F before transplanting), in addition to planting slips deeper, adding more soil near the slips at the start and deeper thorough watering.
5. A window box was created to educate home gardeners in visualizing root development. This box was a good idea however the sweet potato crop was low, and the differentiating roots did not reveal themselves close to the “window”. Perhaps there was too much light for the roots despite the closed window keeping the roots dark. Also, the box had to be modified for its watering needs, and this may have slowed crop development.
6. Begin “discovery digs” at your calculated Days to Harvest (DTH), which for us was September 17, but expect most root bulking the final 3-ish weeks. Sweet potatoes do not tolerate temperatures below 50°F nor frost. We benefitted from a respite in our cooler/wetter fall weather and harvested our largest roots and most prolific plants on October 1, 8, 15. This was past our “due date” by several weeks.
7. Save your favorite sweet potato and store it in a cool (55-60°F) dry place, then use them to grow your own sweet

potato slips next spring. Do not store them in the refrigerator as they may lose flavor and rot at those temperatures (34-40°F).

- h. Harvest tips: see workshop handout for details
 - i. [XDG Sweet Potato Harvest workshop 9.17.25 v2.docx](#)
 - ii. [Sweetpotatoes Grades and Standards | Agricultural Marketing Service](#)
 - iii. XDG Journal Notes
 - 1. Our overall harvest yielded the same overall weight per plant as expected for the bigger commercial growers. 2-10 pounds per plant or 15-30 pounds per 10 ft row
<https://extension.umd.edu/resource/growing-sweet-potatoes-home-garden/>
 - 2. We attempted to cure our sweet potatoes in the Hovander greenhouse but did not achieve the proper temperatures (80°F and 80% relative humidity) due to heavy colder rains, so they were taken to our homes to cure and store for next year's crop. We donated extra sweet potatoes to master gardeners, local home gardeners and the local Food Bank.
 - i. **Conclusions:** In 2025, our sweet potato yield per plant fell squarely in the same ballpark as expected yields commercially. Overall, we found the crop easy to manage from start to finish. We had no pests or diseases beyond some minor moles/voles damage in the row proximally to the open field. We had no evidence of wireworms. 10-gallon cloth pot yields were the same as our rows and had no damage from pests. The straw bale results will be mitigated for next year. There was quite a bit of interest from home gardeners in growing sweet potatoes in Whatcom County. As a result, we are going to repeat this crop for 2026 in our garden with the goal of improving our crop methodology and education for the home gardener.
 - j. Average monthly figures for Ferndale, WA 2025 ([weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,ferndale-washington-state-us,United-States-of-America](#))

Month	Average: Lo-Hi Temp (°F)	Rainfall (inches)	Sunshine (hrs)
May	44.5-62.5	2.4	219
June	50-68.1	0.56	242
August	53.5-74	0.94	249
September	48-68	2.3	188
October	42.5-59	4	125

Information was compiled by the XDG Team

- k. Universities guides used in our XDG
 - i. [Sweetpotato | Vegetable Research and Extension | Washington State University](#)
 - ii. <https://content.ces.ncsu.edu/north-carolina-organic-commodities-production-guide/chapter-8-crop-production-management-sweetpotatoes>
- 2. **Hügelkultur** – a cold composting technique for soil production
 - a. This was our third year of Hügelkultur. It had multi-purposes for us by yielding garden soil, being a pollinator garden and an overwintering wildlife habitat.
 - b. Hügelkultur is a German method of cold composting layers of large woody debris topped with soil and compost that creates a fertile self-watering mound that improves soil structure, provides nutrients and moisture for plants. It is minimal maintenance, after initial construction and requires less work such as tilling/turning, heavy watering or temperature dependence. It is well known in permaculture, replicating nutrient cycles in natural forest floors and storm water management.
 - c. In 2023, a ~20x4 ft trench was dug and filled with tree limbs and demonstration garden (woody >green) debris. We covered that with composted soil made directly from XDG previous composting labors. Finally, we sowed pollinator seeds immediately into the top of the mound. The hügelkultur with its pollinator garden proximity was especially helpful for our 2024 seedless/sterile watermelon crop yield.
 - d. As the hügelkultur continued to decompose in 2024, we added end of the year demo garden waste again (mostly woody) then covered it with

commercial organic mulch followed by a reseeding of pollinator annuals.

- e. In late summer 2024, we discovered that both our hügelkultur and our in-between row cover crop seed banks were out of control. In fact, the in-between row cover crop plant overgrowth shaded some of our primary crop melons in 2023 and 2024. To that end, we decided to solarize our “seed beds” with transparent plastic covered by landscaping fabric for 2025 and 2026.
- f. In the fall of 2025, we dismantled our hügelkultur and moved the new microbiologically rich soil into the northern half of our garden bed. In 2026 we will evaluate to see if the northern half of the garden with the 3 years of “cold composted soil” has a greater yield than the southern half of the garden bed (which has commercial soil amendments).
- g. Of note, and of great surprise and wonder, was that the hügelkultur soil appearance after 3 years of decomposing was indistinguishable from our native soil. We discovered loamy soil full of red wiggler. By using this cold composting technique in our garden, we sidestepped traditional composting which is more labor intensive and requires specialized tools.
- h. In April 2026, we will test the Hügelkultur soil for mineral content and pH.
- i. In 2024, we conducted a citizen science test for microbial health “Soil your Undies Challenge” in our hügelkultur “with similar findings as our regular garden beds. (www.nrcs.usda.gov/state-offices/oregon/soil-your-undies-challenge, sustainability.ncsu.edu/ and www.nrcs.usda.gov/)
- j. We highly recommend a modified hügelkultur for the home gardener who wants to sidestep some of the labor-intensive traditional composting techniques and who has larger woodier garden debris while providing a secondary garden bed that slowly decomposes producing rich soil. (Sustainable Landscapes: Creating a Hügelkultur for Gardening with Stormwater Management Benefits | Oklahoma State University)

3. **Modified Johnson-Su Bioreactor** – new cold composting technique for garden soil production.

- a. Having discovered the value and fun of cold composting for garden soil production while bringing efficiency and multi-purpose use to a corner of our garden, we are exploring another cold composting technique. After deconstructing our Hügelkultur and reaping the rewards of new rich garden soil, we are building a modified Johnson-Su Bioreactor, well known in regenerative farming. ([PowerPoint Presentation pdf](#))
- b. To contrast, traditional composting technique is labor intensive and requires close monitoring for proper outcomes but can be productive in a short amount of time (2-3 months). The bioreactor uses leaf mold present in our fall leaves, naturally supplied water and air from our PNW, to decompose plant material with mycorrhizae and red wiggler. It has a short (2-3 week) hot phase, followed by a longer worm and mycorrhizae composting phase for completion in about one year.
- c. This fall we built two modified Johnson-Su bioreactors:
 - i. One container is a single hog wire panel (6-gauge, 36inx72 in, 4x4 inch mesh) with a chicken wire “smokestack” in the center. We lined the round with landscaping fabric and filled with leaf litter from our sweet potato crop and surrounding trees.
 - ii. The second container has two panels for sides and one panel cut into thirds for each of the ends of the container and as a spacer in the middle. It is also lined with landscaping fabric then filled with local leaf litter.
 - iii. Special thanks to Hovander Parks personnel for blowing leaf litter into piles so that we could gather and fill our reactors more efficiently. We appreciate your enthusiasm and generosity in aiding us in our experimental endeavors. It was an immense help.
 - iv. **Leaf mold** - leaves gathered from the ground already have fungus/mold growing on it, so there is no need for additional enzymatic starters; Some folks chop up their leaves into smaller particles for a quicker final product, however since our cold temperatures were upon us slowing any fungal/bacterial composting, we did not exert ourselves in this manner.

- v. **Water** is applied regularly if in a dry geography either via drip irrigation or a sprinkler; however, our W. WA fall weather is perfect as the only source of water for our bioreactor at this time. In the summer, we will install drip irrigation to keep it moist.
- vi. **Air** is provided by the chicken wire “smoke stack” placed in the center of the circular bioreactor and no more than 2 feet from the outside edge; or by keeping the panel walls no more than 2 feet apart; Air travels thru and around the loosely attached landscape fabric; perforated PVC pipe or other items are useful for getting air into your reactor if the radius is larger than 2 feet;
- vii. **Internal temperatures in the hot phase** should reach 135°F before cooling and adding worms. After one week of rain and losing up to 50% of our original material height, our internal temperatures taken in the morning were 70°F; We do not know what elevated temperatures our bioreactors achieved before autumn arrived.
- viii. **Vermiculture** completes the tasks necessary for a fungal dominant composter and then we wait for rich “live” soil next fall.
- ix. Fall of 2026 we will deconstruct the bioreactors and test the new soil and ascertain how best to use it for a 2027 demonstration of yield differences in bioreactor soil vs native or commercial amendments.

NOTE – the red wiggler are a donation from Master Gardener, David Kellers “in-ground” worm bin. We hope to demo “in-ground” worm bins next year as well. Stay tuned for another efficient and minimal maintenance, multi- purpose garden technique in the XDG for the home gardener.

4. **Tea Demonstration Garden**

- a. In early 2025, the Team joined Dr. Miles and PhD candidate Dr. Srijana Shrestha’s Community Tea Project at Skagit’s WSU NWREC.

- b. Tea is the world's most consumed beverage second to water. The research project focuses on efficacy of tea plants for the W. WA home gardener and small crop farmer. Skagit commercial farmers do not find tea production cost efficient enough for them to turn a field over to Tea plants. Indeed, the first flush harvest on *Camellia sinensis* is not for 3-5 years.
- c. The variety that is being researched by Skagit's NWREC is a cultivar from OSU and has been growing in the Willamette Valley, OR for 30 years. It came from the first Tea plantation in the nation found in South Carolina and has been preserved genetically since. The Oregon cultivar has met specific criteria and has been officially named "Pacifica Minto".
- d. We received 6 Pacifica Minto tea plants in August from NWREC from low, middle, and high propagation locations from Dr. Shrestha's plants.
- e. Concomitantly, David Keller, Deva Katir, and Juliana Bohn participated in power washing the outside and inside of Hovander Parks Master Gardener Greenhouse as well as sterilizing the inside with a broad-spectrum fungicide. It was discovered that the greenhouse requires space around the outside walls for optimal care and maintenance of the greenhouse. The south facing wall fits the bill for XDG multi-purpose needs. Our Tea plants require heat and humidity as well as wind protection. Using this location for the new demonstration garden, our Tea Hedge will also passively facilitate an access perimeter for care and maintenance at least along the south facing Master Gardener Greenhouse wall.
- f. The Team received approval from the Master Gardener Foundation planning committee in August and were given a green light for XDG's new project, the budget and location for the Tea Demonstration Garden at Hovander Park.
- g. This began the perspiration part of our inspiration. In the late summer, we began to move five mature plants located along the south wall to the newly proposed sections of the Berry, Welcome and Hedge Gardens. Soon we will remove a sod perimeter, lay a landscaping fabric barrier, and chip the top six inches. Finally, we will form and amend a 20x4 ft row for the Tea Plant Hedge.

- h. We had hoped to get the plants established in the ground in their new site by the end of August to follow NWREC research protocol, but that was not to be. Currently, the tea plants are overwintering in specialized pots, including cloth pots and “air” pots. We are eager to see how the plants perform, since they arrived from NWREC with severely bound roots in regular plastic pots. Air and cloth pots have the benefit of “air pruning” and we hope they will be in better shape for planting this spring.
 - i. At this point, WSU is having the XDG Team (along with 50+ other small farmers and Master Gardeners) report data bimonthly on their size, growth habitat, presence or absence of diseases, special practices or issues found. We also attend Dr. Shrestha’s zoom lectures. There are many growing guidelines from OSU’s field research.
 - j. Once planted in the spring drip irrigation and maybe a mister, the tea plants require extraordinarily little care. In general, our *Camellia Senensis* “Pacifica Minto” will be pruned or shaped for ease of harvest into a 4ft hedge. The leaves are hand harvested 1-2x/year after they mature in 3-5 years.
- k. When it comes to processing tea leaves for ingestion, That, is a whole nother-thingamajig! Later for that. In the meantime, if you are interested in learning more about teas and gong fu tea tasting (which is an informal social sharing of teas), contact Juliana Bohn and she will set it up in the greenhouse.
- l. Look for signs coming to the Tea Demonstration Garden, annual tea workshops and expect our “first flush” harvest festival in 2027-28.

5. **Integrated Pest Management (IPM)**

- a. IPM is a science-based approach to control diseases and pests using techniques that minimize risks to people and the environment. The key focus is prevention, monitoring, pest identification and assessing efficacy of methods.
- b. In the XDG, we observed leaf cutters on our sweet potatoes. After researching them, we learned that the effects are incidental and decided intervention was not necessary. We learned what wireworm

damage and galls looked like but did not observe any on our sweet potatoes at harvest.

- c. The only pest that was a problem was moles/voles that ate holes in some of our larger sweet potatoes. We knew we may be dealing with them as we were close to an open field which created perfect conditions for them. We inadvertently provided “cover” for these underground digger pests with our solarization project and drip irrigation which kept the soil warm and moist and soft. The crop row closest to the open field had the most damage from these burrowing pests but it was still less than an estimated 10% overall.
- d. When we grow the sweet potato crop again next year, we expect to have to mediate differently against these resourceful pests. IPM next year may include reducing their food source of grubs by using beneficial nematodes (or renting chickens). We can try perimeter plant repellants to see if they are effective such as garlic, mint or lavender. We have an accipiter that has been hunting rabbits successfully at Hovander that we may have to enlist. Or we could install an owl box. Another possibility is digging a perimeter trench filled with gravel. We could place camphor or other essential oils in their tunnels but that would mean we would have to find and dig into their tunnels, as well as replacing the oil frequently. The XDG Team is committed to coming to the garden only once a week and therefore, the team is not interested in increasing labor hours. In the short term, I have excessive garlic bulbs that I could plant for a perimeter and test that for 2026. If you have any university researched ideas, feel free to contact me. Stay tuned.
- e. **Western Toad, *anaxyrus boreas***, was the newest team member to join the XDG team. Mr. Toad was a productive and resolute IPM gardener. Mr. Toad, with his fancy cream dorsal stripe, set up housekeeping in our drip irrigation cabinet and stayed the entire season. Mr. Toad was extremely helpful in reducing and controlling our wasp population that started their paper hive inside our irrigation cabinet as well. In the end, the paper wasp nest did not get larger than $1\frac{1}{2} \times 2.5$ inches. It could have gotten so much larger without Mr. Toads’ efforts. The paper wasps closed shop the same day we observed the absence of Mr. Toad and our first night of frost at Hovander Park. We do not know if he is buried and hibernating “in situ” or made his way back to Tenant Lake, where

it has been hypothesized from whence, he came. Mating for the western toad occurs near ponds and wetlands. The mating season varies widely and can occur January thru July. We appreciate Mr. Toad's commitment to IPM in XDG. We invite our esteemed Mr. Toad to join us in the garden again next year.

- f. **Paper Wasp**, we chose not to destroy the paper wasp hive that set up residence in our irrigation cabinet. *Vespinae* are beneficial to the gardener as they assist in pollination by feeding on nectar and control pest population by feeding on larvae, including WIREWORMS. Now that is ecological serendipity! At the end of the season, our sweet potatoes were wireworm free (despite evidence of their nearby presence) and no one got stung. In addition, since we officially "adopted" this paper wasp hive, we reported to hornets@agr.wa.gov that our paper wasp hive was not co-opted by Asian giant hornets (*Vespa Mandarinia*).

6. **Pollination hydration in the garden**

- a. In the past we have invited pollinators to our garden with a hydration station and a pollinator garden (hügelkultur), which doubles as an overwintering invertebrate habitat.
- b. In 2024, we used drip irrigation to keep a shallow container with pebbles in water for our vertebrate and invertebrate garden friends as a hydration station.
- c. In 2025, David Keller installed a solar powered fountain dedicated to a pollinator hydration station. The solar panels' 12 ft pole is secured to a composting column filled with garden debris. We now have a multi-purpose garden area that is a hydration station for pollinators, a compost area for soil production and an overwintering habitat.
- d. Finally, to our great surprise and enjoyment, it was reported that we had a veritable "bee bar" with every spot at the table taken at the height of our growing season.

7. **Polyethylene Mulch (PE) comparisons**

- a. There are pros and cons to plastic mulches vs organic mulch in the garden. Most of our XDG crops benefit from warmer soil temperatures than what is usually provided by mother nature in our W. WA shoulder

season for supporting our sensitive transplants. Decomposing plastic mulch will leave plastic debris as it does not fully decompose; cardboard mulch takes time to fully decompose; Organic mulch does not warm the soil temperatures as much as PE. Plastic PE as mulch can be reused and recycled. Our XDG PE mulch has been sterilized and reused in the XDG for the past 4 years.

- b. Our specialized crops of sweet potatoes and seedless watermelon require higher soil temperatures of 65°F before transplanting in late May to obtain our DTH. We evaluated the soil temperatures weekly at 9 am with a longer probe and found in general that our soil temperatures are higher with PE by approximately 5°F or more than with bare soil.
- c. Red and green intra-red transmitting (IRT) mulch may not heat the soil as much as black PE, but this small difference does not seem to be significant in plant growth or yield. We traditionally use the silver plastic mulch in the row closest to the open field as it is best for insect and small varmint repulsion.
- d. Black plastic PE mulch is best in our garden for heating up soil temperatures for some of our sensitive transplant crops but does not are effective after the crop canopy shades the PE.
- e. [Plastic Mulch and In-row Spacing Effects on Sweetpotato Yield in Northwest Washington.](#)

8. Water Conservation

- a. Our 25x25 ft garden uses a six-manifold drip irrigation system, complete with pressure regulators, filters, and timers. It is protected by being housed in a locking cabinet. We use ½ inch mainline then perforated ¼ inch for crop rows and/or misters for our cloth pots. This is a “set and go” system that allows us to be in the garden only once a week. Hygrometer testing revealed we were able to keep our sweet potatoes moist up to a 15 inch depth.

9. Fire management

- a. XDG is considered a low fire risk with low hazardous fuels and a defensible space around Hovander Homestead. In addition, with its deeper and consistent irrigation it remains moist as opposed to being a tinder box even in the heat of summer.

10. Education

- a.** Our goal at XDG is to provide innovative growing techniques and crops for the home gardener while incorporating the Master Gardener Priorities. Our inspiration is WSU's Skagit's NWREC university backed research. We provide 1-2 workshops annually with crop giveaways. We post regularly on Master Gardeners Only Facebook page. We publish our end of the year report on the WSU Master Gardener Program and Master Gardener Foundation websites.

We enjoy and gain inspiration every day from our fellow Master Gardeners and all our garden friends.

We are grateful to the Whatcom County home gardeners who followed our specialty crops and methodology. We appreciate you checking in to tell us how you have benefited from our experimental demonstrations throughout the seasons.

A special thank you to Dr. Miles and her team at Skagit's WSU NWREC for providing us with so many learnings and attention.

Thank you to all the Master Gardeners that joined us in the XDG, asked questions, and provided us with feedback. We appreciate you, always.

Gratitude for David Keller, Master Gardener, and his dedication and inspiration to the Experimental Demonstration Garden at Hovander Park, Ferndale.

XdG adopted motto: “*There are no failures. There are only valuable lessons.*”

Written and submitted by Juliana Bohn, Master Gardener, 2023, Lead Experimental Demonstration Garden, Hovander Park, Ferndale, WA

Figure 1 - XDG Sweet Potato Crop 2025

Figure 2 - Sweet Potato slips grown in personal greenhouses 2025

Figure 3 - David Keller demonstrating tool for transplant sweet potato slips into raised bed with drip irrigation and PE mulch 2025

Figure 4 - Learning how to use a Broadfork at Harvest 2025

Figure 5 - October 2025 Sweet Potato Harvest

Figure 6 - David Keller constructing the modified Bioreactor 2025

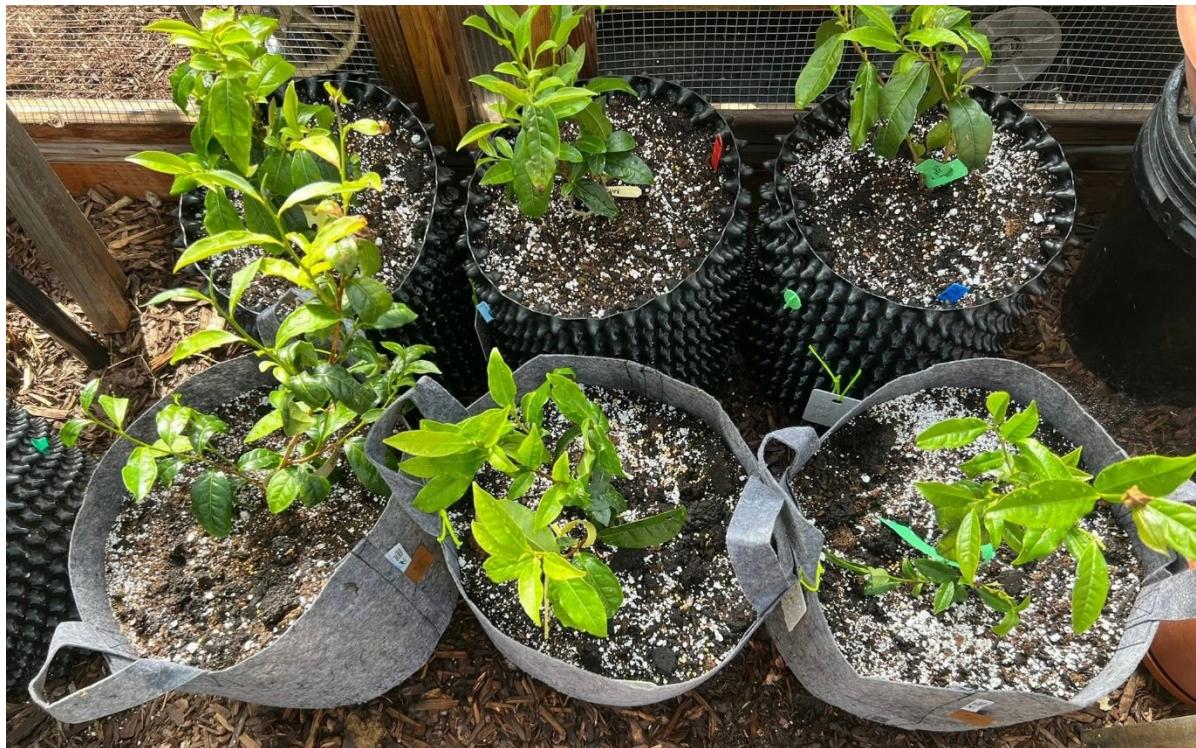


Figure 7 - *Camellia Sinensis* "Pacifica minto" overwintering 2025

Figure 8 - XDG workshop(s) 2025

Figure 9 - Western Toad occupying our Irrigation Cabinet 2025