Agriculture in a Changing Climate: Implications for Educators, Industry, and Producers Workshop

Climate Mitigation and Adaptation

Hal Collins
USDA-ARS – Grassland Soil
and Water Research Laboratory
Temple, TX
hal.collins@ars.usda.gov

March 9-11, 2016

Climate Mitigation and Adaptation

Climate mitigation
is any action taken to
permanently eliminate
or reduce the long-term
risk and hazards of
climate change to
human life, property.

An anthropogenic intervention to reduce sources or enhance the sinks of greenhouse gases.

PNW - Agricultural Greenhouse Gas Emissions

Mitigation Strategies

Mitigation involves complex interactions between environmental, economic, political, institutional, social, and technological processes.

Two approaches:

- 1) C sequestration of CO2 increasing soil organic C pools. (finite)
 - intervention to enhance the sinks of greenhouse gases.
- 2) Reduction of greenhouse gases to the atmosphere
 - intervention to reduce sources of greenhouse gases.

Mitigation Strategies

Mitigation involves complex interactions between environmental, economic, political, institutional, social, and technological processes.

1) C sequestration of CO2 – increasing soil organic C pools. (finite)

Crop Management

 eliminate bare fallow, increase C inputs, cover crops, fertilizer and irrigation, crops with high biomass production

Conservation tillage

- reduce soil disturbance, slow decomposition rates

Sequestration and Greenhouse Gas Emissions from Intercropping Switchgrass and Hybrid Poplar

Table 3. Above ground biomass-C and time-integrated growing season CO_2 -C emissions for the 2011 – 2014 crop years.

	Biomass Production					
	Monoculture	Poplar +	Monoculture			
Year	Poplar	Switchgrass	Switchgrass			
	Mg DM biomass C ha ⁻¹					
2011	†o.5Da	o.7Da	o.6Ba			
2012	1.7Cb	5.9Ca	7.6Aa			
2013	5.8Bb	10.3Ba	9.3Aa			
2014	14.4Ab	19.7Aa	8.oAc			
†Cumulative	14.4b	27.6a	25.5a			
	§CO₂-C emissions					
	Mg CO ₂ -C ha ⁻¹					
2011	4.2Aa	3.6BCa	3.9Ca			
2012	3.6ABb	5.5Aa	5.6Aa			
2013	3.2Bb	4.2Ba	4.7Ba			
2014	3.3Bb	4.3Ba	4.2BCa			
Cumulative	14.3a	17.6a	18.4a			
	$\Delta = (DM biomass C) - (CO2-C)$					
	C ha ⁻¹ season ⁻¹					
2011	-3.7Dd	-2.9Db	-3.3Bc			
2012	-2 . 0Cc	0.4Cab	2.0Ab			
2013	2.6Bb	6.1Ba	4.7Aa			
2014	11.1Aa	15.4Aa	3.8Aa			
Cumulative	0.1C	10.0a	7.1b			

Greenhouse Gas Emissions from Intercropping Switchgrass and Hybrid Poplar

Collins et al, 2016

Table 6. Net global warming potentials (GWP) for the 2011-2014 growing seasons of the monoculture poplar, poplar/switchgrass intercrop and monoculture switchgrass treatments.

1 1 /1 1	, 0				0
	Biomass C	Carbon	Nitrous		[£] Net
	Production	Dioxide	Oxide	Methane	GWP
	Mg CO ₂ eq ha ⁻¹ season ⁻¹				
Monoculture Poplar					
2011	† 1.8Da	15.5Aa	0.136Aa	-0.0029Aa	+13.8Aa
2012	6.1Cb	13.5ABb	0.150Ab	-0.0065Aa	+7.5Ba
2013	21.3Bb	11.7Bb	0.072Bb	-0.0034Aa	-9.5Ca
2014	52.9Ab	12.1Bb	0.164Ab	-0.0059Aa	-40.6Db
§Cumulative	52.9b	52.8b	0.522b	-0.0187a	+0.4a
Poplar/switchgrass intercre	op				
2011	2.4Da	12.7Ba	0.121Ba	-0.0027Aa	+10.8Aa
2012	21.5Ca	20.2Aa	0.396Ba	-0.0052Aa	-1.0Bab
2013	37.7Ba	15.4Ba	1.395Aa	-0.0028Aa	-20.9Cc
2014	72.1Aa	15.9Ba	1.237Aa	-0.0054Aa	-54.9Dc
§Cumulative	101.2a	64.2a	3.149a	-0.0161a	-33.9c
Monoculture Switchgrass					
2011	2.1Ba	14.1Ca	0.129Ba	-0.0023Aa	+12.3Aa
2012	27.8Aa	20.5Aa	0.469Ba	-0.0055Aa	-6.9Bb
2013	34.2Aa	17.2Ba	1.605Aa	-0.0037Aa	-15.4Bb
2014	29.2Ac	15.5BCa	1.143Aa	-0.0019Aa	-14.2Ba
Cumulative	93.3a	67.3a	3.346a	-0.0137a	-22.7b

Mitigation Strategies

Mitigation involves complex interactions between environmental, economic, political, institutional, social, and technological processes.

2) Reduction of greenhouse gases to the atmosphere

- Conservation Tillage
 - slows decomposition rates
- Biofuel Production
 - canola, safflower, camelina, switchgrass, residual
- N management
 - right place, right time, right source, right rate; legumes
- Livestock Production
 - improved feed and nutrient management, manure management, biogas recovery, reducing numbers, reduce grain for feed

Greenhouse Gas Emissions from Soil Amended with AD-Dairy Manure

Digested Effluer

Evaluation of liquid dairy manure and digested effluent on GHG emissions from soil.

Global Warming Potentials

	kg P ₂ O ₅	kg CO ₂		% of
Amendment	ha ⁻¹	eq. ha ⁻¹	%	applied N
Liquid Dairy Manure	161	219		0.33
AD Effluent	109	193	-12	0.29

Greenhouse Gas Emissions from Soil Amended with AD-Dairy Manure: Recovered Nutrients

P-Solids/Polymer Coagulation (WSU/Angar)

Global Warming Potentials				kg CO ₂
Amendment	kg P ₂ O ₅ ha ⁻¹	kg CO ₂ eq. ha ⁻¹	%	eq. ha ⁻¹
Liquid Dairy Manure	161	219		
AD Effluent	109	193	-12	
Urea + MAP	56	136	-38	

Struvite Crystallization (Multiform Harvest)

 $MgNH_4PO_4$ - 6(H_2O).

Summary: AD

✓ AD dairy manure used as a fertilizer results in a minor reduction of GHG emissions compared to untreated dairy manure. ~ -12%.

✓ P recovered as struvite or fine P solids applied at agronomic rates significantly reduced GHG emissions. ~35%

✓ Only 6 of the 415 dairies in WA state use AD and some form of nutrient recovery. If the technology is widely accepted GHG's could be reduced by 83,000 Mg CO, eq y⁻¹. ~8%.

Barriers Moving from Research of Mitigation Strategies to Implementation

Mitigation is complete when CO2 is removed from the atmosphere

Farm-level adoption constraints

- Economics of adoption availability of capital and/or subsidies
- Lack of capacity and skills size matters
- Lack of information measurement and monitoring
- Property rights single party ownership
- Uncertainty land based vs industry based options
- Leakage increased production and emissions outside project region
- Reversibility change in management

USDA UNITED STATES DEPARTMENT OF AGRICULTURE

Questions?

Conference Session A Goals: GHG Mitigation

✓ Summarize regional information on the environmental and economic benefits and costs of mitigation strategies for rangelands, livestock, and croplands

✓ Identify pathways and barriers to the adoption of specific mitigation strategies, including:

- 1) Soil health/carbon sequestration,
- 2) Nitrogen stewardship,
- 3) Livestock partnerships, and
- 4) Energy generation and efficiency

