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Abstract

The Environmental Protection Agency (EPA) develops and implements various policies to lessen

emissions and protect human health and the environment. This paper compiles panel data sets

on manufacturing plant level weighted emissions to estimate the sign and magnitude of pollution

spillover in connection with the High Priority Violation Policy (HPVP). The stacked event study

analysis shows that, on average, a compliant manufacturing plant decreases weighted air emissions

by about 14.44 percent if there is a record of violation of its sister plant(s). In contrast, the plant

increases cross-media weighted water emissions by about 24.42 percent associated with the concurrent

violation status of its sister concern(s). Specifically, this study finds evidence of both positive and

negative spillover effects of HPV violation.

Keywords. Pollution Spillovers, Cross-media Pollution Spillover, Stacked Event Study, Time vary-

ing treatment effect.
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1 Introduction

Environmental regulations’ role in reducing emissions is substantial (EPA [2011]). Nevertheless, as

environmental enforcement increases facilities’ compliance and reduces emissions, the economics litera-

ture provides evidence of pollution leakage associated with that enforcement. It seems insufficient if we

only estimate the plant-level emissions responses to measure the degree of effectiveness of environmental

regulation. Estimating the trade-off of emissions among the sister plants within the multi-plant firms(s)
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is necessary to evaluate the net impact of environmental regulation. This paper aims to estimate signs

and the magnitude of pollution spillover across sister plants associated with environmental regulation.

A fair share of literature has examined whether regulation drives pollution substitution into other

media. Limited empirical literature contains research evidence of no regulation-induced pollution sub-

stitution across other media (Sigman [2011], Greenstone [2003]). A few critical studies show evidence of

positive spillover associated with the regulations (Jiang et al. [2013], Evans [2016]). Jiang et al. [2013]

show that regulation not only reduces emissions in an assigned location but also lessens pollution to

other nearby locations. Evans [2016] suggests that the appearance of plants’ violations on the watch list

leads to a significant decrease in the likelihood of mean future violations.

Many studies related to negative pollution spillover show evidence of pollution leakage across the

national boundaries (List et al. [2003], Dean et al. [2009], Hanna [2010]). Limited empirical research

analyzes pollution spillover within multi-plant firms(s). Gibson [2019] tests the impact of county non-

attainment status and finds that a less regulated facility raises the levels of air emissions due to the

imposition of regulation on a sister plant. Rijal and Khanna [2020] examine the magnitude of pollution

leakage and find that a compliant air facility increases toxic air emissions if at least one of its sister

facilities of the same 6-digit NAICS code is concurrently under violation. Due to the limited empirical

evidence of intra-firm pollution leakage associated with environmental regulations, this is important to

examine whether those outcomes are consistent.

The key research question of this paper is to examine the change in emissions level of a compliant

facility due to the High priority violation (HPV) status of at least one of its sister facilities belonging

to the same industrial classification. The HPV designation varies over time across the offending plants,

and the violation designation is transient as it is costly to most plants. This study utilizes a stacked

event study design to exploit the disparity in the timing of HPV designation across non-compliant sister

plant(s) to estimate whether a compliant facility changes its emissions associated with sister plant(s)’

non-compliant status.

This paper contributes to the literature on pollution substitution (Sigman [2011], Greenstone [2003],

Rijal and Khanna [2020], Gibson [2019]) and literature on positive spillover from regulations (Jiang

et al. [2013], Evans [2016]) in three significant ways. First, this study estimates the change in total toxic

weighted emissions response instead of the total emissions. The reason is that the degree of toxicity
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varies across different pollutants. The toxic weighted emissions also help make a uniform standard for a

better understanding of change in emissions. Perhaps, this is the first paper that estimates the change

in the firms’ response to total weighted emissions associated with the violation status of sister plant(s).

Second, the analysis provides evidence of intra-firm air emissions decline associated with sister plant(s)’

HPV designation. Third, along with estimating the change in a compliant plant(s)’ air emission, this

study investigates the change in cross-media weighted water emissions associated with sister plant(s)’

HPV designation. To my knowledge, this is the first paper that estimates the influence of sister plant(s)’

violation on compliant facilities’ cross-media water emissions. Specifically, this paper provides evidence

of air emissions monitoring environmental regulation’s positive and negative spillover effect on sister

plants’ weighted air emissions and cross-media weighted water emissions, respectively.

This study constructs balanced panel data sets of plant-level weighted emissions of the compliant

manufacturing sister plants between 2005 and 2012 from 6,247 manufacturing facilities of the Toxic

Release Inventory (TRI) data. The analysis reveals statistically significant evidence of intra-firm air

emissions decline associated with high priority violation regulation in the concurrent and later years.

The compliant manufacturing plant(s) would decrease total toxic weighted air emissions by 11.81−14.44

percent, weighted Criteria Air Pollution (CAP) by 10.30 − 12.12 percent, and weighted Hazardous Air

Pollution (HAP) by 11.81 percent associated with sister plant(s)’ HPV designation of same industrial

classification. Stated differently, the effect of sister plant(s)’ HPV designation on facilities with no history

of high priority violation is a net depletion in total weighted air emissions, total weighted CAP emissions,

and total weighted HAP emissions. Another gripping finding is that compliant manufacturing facilities’

cross-media weighted water emissions would go up by 24.42 percent in the concurrent year of sister

plant(s) HPV status and then gradually decrease in later years. Nevertheless, the HPVP intends to

regulate air emissions, and the sister plant(s)’ HPV designation also alters compliant plants’ cross-media

weighted water emissions in a concurrent year.

The robustness check rules out that other contemporaneous firm-level shocks drive the findings. This

paper constructs falsification tests using a false treatment unrelated to emissions exceeding the limit.

In particular, I show that the results with the false treatment effect are not statistically significant.

Therefore, the placebo tests indicate that the facility’s response to the sister plant’s violation associated

with exceeding the emissions limit is sufficiently consistent.
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The benefit of Clean Air Act (CAA) regulations is well documented, but the distributional effect may

vary across the regulations. The key objective of HPVP is to force the non-compliant facility(s) to retreat

to compliant status by reducing emissions. This study documents that HPV status also creates a positive

pollution spillover effect through net weighted air emissions reduction of the firm(s). HPV regulations

may also induce pollution substitution by increasing cross-media water emissions in a concurrent year.

Even though this paper particularly focuses on HPV regulations, the same approach can be applied in

other settings to test the effectiveness of different regulations under the Clean Air Act and Clean Water

Act.

The rest of the paper is structured as follows: Section two describes the background of the High

Priority Violation Policy (HPVP), section three contains the theoretical background, section four provides

a description of the data and empirical strategy, sections five and six contain the results and robustness

check respectively, section seven concludes.

2 Background of HPV Policy

EPA implements a range of policies and strategies to lessen emissions and protect human health and

the environment. EPA designed the High Priority Violation Policy (HPVP) to detect and monitor the

violations falling under the definition of High priority Violations (HPV). Under the HPVP, implemented

in 1999, a violation is defined as HPV if it poses a direct threat to public health or its intensity deters

the execution of other CAA programs (EPA [1999]). According to EPA [1999], a violation is categorized

as HPV if it fits within one of the ten ‘General HPV criteria’ or the ‘HPV matrix criteria’. The ‘General

HPV criteria’ and ‘HPV matrix criteria’ cover a broad range of violation issues, which include but are

not limited to failure to obtain a PSD permit, violation in monitoring and record-keeping, failure to

obtain title V certification, violation of toxic air requirements, violation of an allowable emissions limit.

‘General HPV Criteria 8’ or ‘HPV Matrix Criteria’ trace and handle the violations of allowable

emissions limits of the pollutants. The regulator compares the actual level of emissions of the pollutants

with the allowable emissions limits of those pollutants. For instance, under the HPV Matrix criteria 2,

a violation will be categorized as a high priority violation, If the magnitude of violation is more than 15

percent above the applicable limitation.1 It is usually expected that a high priority violation shall be

1For example, with a SIP limit of 1.05lb/mmBtu for sulfur dioxide emissions in 24 hours, an industrial plant produces
1.38lb/mmBtu sulfur dioxide. Then, the magnitude of violation percentage becomes (1.38 − 1.05)/1.05 = 31.4 percent.
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Note: This figure shows the HPV rate per region associated with violating the maximum allowable emissions limit and

the average weighted emissions per plant per year between 2005 and 2012. HPV rates are higher in Regions with higher

emissions per plant. We can also see some important exceptions. Region 5 (IL, IN, MI, MN, OH, WI) has above average

weighted emissions per plant and close to average HPV rate. On the other hand, Region 8 (CO, MT, ND, ST, UT, WY)

has below average emissions per plant and an above-average HPV rate. The data comes from the AFS and TRI.

Figure 1: HPV Rate and Weighted Air Emissions By Region

Note: This figure represents a heatmap for the percentage of HPV across the US states in the period 2005 to 2012.

This figure illustrates that HPV rates associated with violating maximum allowable emissions are higher in Texas and

Pennsylvania. The data comes from the AFS.

Figure 2: HPV Violation Rate Associated With Exceeding Emissions Limits
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resolved within 270 days, but it may take more time for complex cases (EPA [1999]). Failure to resolve

HPV causes significant penalties to the facilities.

Figure 1 graphs the HPV rate per region associated with violating the maximum allowable emissions

limit and the average weighted emissions per plant per year between 2005 and 2012. HPV rates are

higher in regions with higher emissions per plant. We can also see some important exceptions. Region

5 (IL, IN, MI, MN, OH, WI) has above average weighted emissions per plant and close to average HPV

rate. On the other hand, region 8 (CO, MT, ND, ST, UT, WY) has below average emissions per plant

and an above-average HPV rate. Figure 2 represents a heatmap for the percentage of HPV across the

US states in the period 2005 to 2012. This figure illustrates that HPV rates associated with violating

maximum allowable emissions are higher in Texas and Pennsylvania.

3 Theory

This section represents a learning model of regulatory deterrence based on Maniloff [2019]. The study

considers multiple manufacturing firms i with experience n and a single regulator to detect violation(s).

The regulator chooses the degree of effort to detect the violation and the stringency of penalty for the

detected violation(s) to maximize the social welfare. Using passive Bayesian learning, firms learn the

regulator’s effort and update their compliance effort decision based on the regulator’s degree of stringency.

Like Maniloff [2019], the process can be broken down into the following steps: (i) Regulator sends a signal

about the degree of effort to detect a violation. In practice, the number of facilities to be categorized as

high priority violators, any action(s) of the regulator against the sister facility(s), etc. (ii) Firms observe

the signal of the regulator and re-equip their own belief regarding the effort of the regulator. (iii) Firms

recondition their effort to change the level of emissions based on updated beliefs. (iv) Firms’ updated

efforts change the likelihood of facility(s) being detected as violators.

In accordance with Maniloff [2019], I consider the effort level of the firms, ρi,nϵ
[
ρ, ρ

]
and firm would

choose ρ in the absence of regulation. Regulator’s degree of stringency θ , where as firm’s belief about

regulator’s stringency is θ̂i,n. The likelihood of a violation being detected P (θ, ρi,n), where increasing

firm’s effort or decreasing regulation reduces the chance of detecting violation. With cost of effort C(ρi,n)

and fixed penalty R, the set up of the firm’s cost minimization problem:2

Since the magnitude of violation percentage is greater than 15 percent, the violation is categorized as HPV.
2Assume that, Cρρ (ρi,n) is positive, continuous and bounded.
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minρi,n

(
C (ρi,n) + P

(
θ̂i,n, ρi,n

)
R
)

(1)

s.t. ρi,nϵ
[
ρ, ρ

]
(2)

The application of the implicit function theorem following the solution of the minimization problem

yields:3

∂ρ∗i,n

∂θ̂i,n
=

−Pρθ

(
θ̂i,n, ρ

∗
i,n

)
R

Cρρ

(
ρ∗i,n

)
+ Pρρ

(
ρ∗i,n

)
R

> 0 (3)

It implies that if the firm learns that the regulator’s degree of stringency to detect violations is high,

it will apply more compliance efforts to avoid penalties and vice versa. Hence, the higher the compliance

effort by the firm, the lower the probability of violation.

The firm’s belief about regulator’s stringency is θ̂i,n for θ is a normally distributed random variable

with mean θ̂0 and variance σ2
0 . Firms receive noisy signal Si,n, which is also normally distributed with

mean θ and variance σ2. With n number of observed signals and the average value of signal Si,n, firm’s

updated belief becomes:

θ̂i,n = θ̂0
σ2

σ2 + nσ2
0

+ Si,n
nσ2

0

σ2 + nσ2
0

(4)

With the increase of the number of signals the updated belief, θ̂i,n approaches average value of the

signal, Si,n. Under the context of the Passive Bayesian learning model, Manilof(2019) construes that

deterrence will decrease with experience. Put differently, the firm learns and updates its belief regarding

the regulator’s enforcement based on the signal generated by the regulator. Updated belief makes a firm

more compliant and reduces deterrence.

In order to connect the model’s prediction to my empirical analysis, I consider the following setting:

(i) Consider those manufacturing firms which consist of multiple sister facilities. (ii) Compliant plant

observes the regulator’s action on its non-compliant sister facility(s) in the form of a signal. (iii) Both

Compliance and enforcement are costly. (iv) The social cost of violation is quantifiable. In the light of

3First order condition: Cρ

(
ρ∗i,n

)
+ Pρ

(
θ̂i,n, ρ

∗
i,n

)
R = 0 and formula of implicit function theorem:

∂z

∂x
= −

Fx

Fz
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the above conditions, I formulate the following empirical predictions:

Prognosis (i) Compliant facility decreases the level of air emissions when at least one of its sister

facilities is concurrently under HPV violation.

Prognosis (ii) Air emissions damage of compliant facility decreases associated with the HPV desig-

nation of its sister plant(s).

Prognosis (iii) Compliant facility may increase cross-media water emissions associated with the

HPV designation of its sister plant(s).

The above predictions highlight the impact of regulations to reduce deterrence. The predictions

particularly focus on net welfare benefit of a regulation i.e., HPVP. The HPVP induces non-compliant

facilities to reduce emissions and reinstall the compliance status. The above predictions help to estimate

the welfare gain,if any, from the compliant sister plant(s) of non-compliant facility. The rest of the paper

investigates whether the predictions work in empirical set up.

4 Data and Empirical Strategy

This paper assembles various data to estimate the relationship between compliant facilities’ weighted

emissions and non-compliant sister facilities’ violation status. This section describes the data source and

empirical foundation.

4.1 Data and Descriptive Statistics

4.1.1 Data Source

This study constructs balanced panel data sets of plant-level total weighted air emissions, total

weighted damages from air emissions, and total weighted cross-media water emissions of the sister facili-

ties under the manufacturing industries. Air and water emissions data come from Toxic Release Inventory

(TRI).Industrial and federal facilities annually report TRI data for certain toxic chemicals that may cause

harm to human health and the environment. Even though TRI records self-reported emissions data of

the firms, under-reporting is very unlikely due to the enormous penalty per day if under-reporting is

detected (Gibson [2019], Blundell [2020], Hanna and Oliva [2010]). Toxic Weighting Factor (TWF) data

is used to calculate plant-level total weighted emissions, which helps to compare facility-level emissions
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data based on a uniform standard. Enforcement and Compliance History (ECHO) data and Facility

Registry Service (FRS) data are utilized to conduct a cross-work from the AFS IDs to the FRS IDs.

High priority violation (HPV) data comes from ECHO data. To better estimate, the effect of treat-

ment using a stacked event study design, the treatment facilities with HPV status are restricted to those

where HPV status persists for no more than two years. This study utilizes the National Organization File

from EPA and Mergent Intellect Online Database through Everett Library, Washington, along with TRI

data to correctly specify the facility-firm linkage. Mergent Intellect database contains facility Duns and

immediate parent Duns for each facility. However, this study also uses the EPA’s National Organization

File to count the active facilities from the year between 2005 and 2012 but closed later and trace if any

facility(s) were acquired later by another firm.

The parent companies’ public/private entity information comes fromMergent Intellect Online Database.

The National Ambient Air Quality Standards (NAAQS) data come from the EPA Green Book, which

indicates the county non-attainment status (if any) of the facilities during the sample period. The Pollu-

tion Abatement and Consumer Expenditure (PACE) 2006 Survey data categorizes the industries as an

industry with high abatement costs and industries with low abatement costs. The mapping from TRI

chemical to criteria pollutant, provided by Greenstone [2003], has been used to categorize the criteria

pollutants. Finally, the AP3 database from Muller and Mendelsohn [2007] with an estimation of marginal

damage is used to calculate the damage from criteria pollutants’ emissions. This paper utilizes the ‘Area’

category of emissions for estimating the damage from VOC and PM2.5.

4.1.2 Sample Analysis

The raw TRI data consists of 687, 549 pollutant level observations from the year 2005 to 2012. The

study omits thirteen pollutants that were first reported in TRI in the years 2011 and 2012.4 The

multiplication of pollutant level emissions by total weighted factor and other necessary calculations leave

127, 504 observations with 21,210 unique facilities. This study further omits 16, 144 non-manufacturing

observations, leaving 111, 360 observations with 18, 658 air facilities. The analysis keeps those facilities

that appear all years, leaving 9, 588 unique facilities and 76, 704 observations.

In the next step, this study tracks the parent D&B numbers of the manufacturing facilities and finds

4Pollutants’ first reporting years are available in TRI supplemental documentation. In total, thirteen new pollutants
were added in 2011 and 2012.
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6, 247 unique manufacturing facilities belonging to 2, 321 immediate parent D&B numbers. This study

individually crosses check facilities’ immediate parent D&B numbers by utilizing TRI data, Mergent

Intellect online database, and National organization Database on a case-by-case basis to find the correct

parent D&B number. The reason for using the National Organization Data file in addition to the Mergent

Intellect Database is to find out the parent D&B number of those facilities that cannot be cross-matched

between TRI and Mergent Intellect Database.5 The analysis finally has 23, 344 observations for air

emissions after removing the facilities for which the duration of HPV status last more than two years

or HPV status repeats later. The same approach has been applied to construct a panel data set for

CAA-regulated pollutants, HAP and CAP pollutants, damage from VOC and PM2.5, and cross-media

water emissions.

4.1.3 Data Summary

Table 1 provides the descriptive statistics of the balanced sample from 2005 to 2012. With the sample of

2,918 plants, about 11 percent of plants have at least one non-compliant sister facility with HPV status,

and on average, a plant emits 13,086.37 weighted air emissions (Panel A). The sample of 2,287 facilities

shows that 13 percent of plants have non-compliant sister plants, and the mean damage from criteria

pollutants (VOC and PM2.5) is 516 million USD (Panel B). Panel C provides information on cross-media

air emissions. With the sample of 481 plants, about 18 percent of plants have at least one non-compliant

air sister facility with HPV status, and on average, a plant emits 5,591.22 weighted water emissions. The

study finds that 45, 41, and 34 percent of the sample belong to industries with low pollution abatement

costs for panels A, B, and C, respectively. For each panel A, B, and C, approximately 39, 40, and 45

percent of plants, respectively, belong to public parent firms. Finally, the percentage of plants with

county non-attainment status for plants A, B, and C is 47, 47, and 36 percent, respectively.

4.2 Defining Treatment

This section is intended to describe the treatment dummy utilized to estimate the model. The High

priority violation policy’s effectiveness in alleviating emissions of the over-emitting plants is obvious.

This study analyzes the impact of the non-compliant status of the sister facility(s) on the emissions of

5For example, the Mergent database does not contain parent D&B numbers of ‘ARMACELL US HOLDINGS INC.’,
but the National Organization data-file does.
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Table 1: Summary Statistics

Panel A: Air Emissions

Average weighted Air emissions per plant in pound 13,086.37

Average log of weighted Air emissions per plant in pound 4.79

Average log of weighted CAA emissions per plant in pound 4.71

Average log of weighted CAP emissions per plant in pound 4.40

Average log of weighted HAP emissions per plant in pound 4.78

The fraction of plants with at least one non-compliant sister facility 0.11

The fraction of plant with low abatement cost 0.45

The fraction of plants belongs to the public parent company 0.39

The fraction of plants with county non-attainment status 0.47

Panel B: Damage from Air Emissions

Average weighted damage from VOC and PM2.5 in USD 516,586,211.87

Average log of weighted damage from VOC and PM2.5 in dollar 17.13

The fraction of plants with at least one non-compliant sister facility 0.13

The fraction of plants with low abatement cost 0.41

The fraction of plants belongs to the public parent company 0.40

The fraction of plants with county non-attainment status 0.47

Panel C: Cross-Media Water Emissions

Average weighted Water emissions per plant in pound 5,591.22

Average log of weighted Water emissions per plant in pound 4.85

The fraction of plants with at least one non-compliant sister Air facility 0.18

The fraction of plants with low abatement cost 0.34

The fraction of plants belongs to the public parent company 0.45

The fraction of plants with county non-attainment status 0.36

Notes: This table provides sample statistics in the balanced sample for the years 2005 to 2012. Panel A, B, and C

contain a sample of 2,918, 2,287, and 481 plants, respectively. The data Comes from the AFS, TRI, NAAQS, PACE

2006 survey, Mergent Intellect Online Database, and AP3 database.
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compliant plants within a firm. The analysis considers a facility i treated in year t if at least one of its

sister facility is concurrently under high priority violation, where the violation status keeps on no more

than two years. There is variation in treatment timing across the plants. Once the non-compliant facility

becomes compliant, the violation status is removed, which means the treatment effect is reversible. I

consider the control group as a ‘never treated’ control group.

4.3 Methodology

With time-varying and reversible treatment effects, a cross-sectional approach may misread the im-

pact of treatment on the outcome; consequently, this paper uses balanced panel data sets. This analysis

employs a stacked event study design to exploit the variation in the timing of treatment. The event

(treatment) is the non-compliant status of the sister facility(s), which takes place at different times for

different compliant sister facilities. Event study design helps to utilize the disparity in the timing of sis-

ter concern facilities to be categorized as HPV to examine whether, after controlling for facility-specific,

time-varying, and industry-time effects, a compliant facility alters its emissions level in the treatment and

later years. The year-fixed effect absorbs the effect of those determinants, which may impact both the

emissions and treatment in a simultaneous way within a year. The plant-fixed effect soaks up unobserved

time-invariant factors related to within plant weighted emissions. The industry-time trend fixed effect

absorbs variation within the industry.

In this study, an observation in the data frame is a facility i in a given year t. Following are the

empirical specification of the first, second, and third models, respectively:

Model:1

Log(emissionsit) = γ0 +

2∑
k=−2,
k ̸=−1

γkDt−k,it + βlzlit + wi + ut + snt + εit (5)

Model:2

Log(Damageit) = α0 +

2∑
k=−2,
k ̸=−1

αkDt−k,it + βlzlit + wi + ut + snt + εit (6)

Model:3

Log(Wit) = α0 +

2∑
k=−2,
k ̸=−1

αkDt−k,it + βlzlit + wi + ut + snt + εit (7)

Where Ait and Damageit are the weighted air emissions and damage from emissions of the compliant
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facility i in period t, respectively. Wit is the weighted water emissions of compliant facility i in period

t. Dt−k,it is the indicator variable, which takes the value of one, for a facility i, with at least one of the

sister concerns categorized as HPV at time t− k. The co-efficient α−2 measures the compliant facility’s

emissions behavior associated with having non-compliant sister facility(s) in the future, α0 measures

emissions associated with having non-compliant sister facility(s) in the current year, α1 to α2 measures

the compliant facility’s emissions associated with having non-compliant sister facility(s) in the past years.

The coefficient of lead one is normalized to zero to increase efficiency in identifying trends (Borusyak

[2021]). Lead two coefficient α−2, also known as placebo coefficient, is used to test the pre-trends.

If the coefficient of lead two is insignificant, then the parallel trend assumption holds. zlit represents

control variable(s) for plant i in period t. Control variables include ‘County nonattainment’, ‘Public’, and

‘Abatement cost’. ‘County nonattainment’ takes the value of one for the plant belongs to a nonattainment

county, else zero. ‘Public’ takes the value of one for the plant belongs to a public parent firm, else zero.

Finally, ‘Abatement cost’ takes the value of one for the plant belongs to the low abatement cost industry,

else zero. The analysis also includes plant fixed effect (wi), year fixed effect (ut) and industry-time fixed

effect (snt). εit is the stochastic error term.

One major limitation of ‘log specification’ is that it cannot consider zero values. On the other

hand, ‘Inverse hyperbolic sign transformation’ not only estimates the natural logarithm of the variable

but also allows for retaining zero-valued observations (Bellemare and Wichman [2020]). I use ‘Inverse

hyperbolic sign transformation’ so that the model can be watchful of the facility’s zero emissions.6 The

coefficients α−1 and α−2 help determine whether the parallel trend assumption holds. If the coefficients

are insignificant, then the parallel trend assumption holds.

4.4 Machine learning tools to select control variables

Choosing the correct control variables is vital to reduce the complexity of the model and for bet-

ter interpretation. Analysts use different machine learning approaches to check the importance of the

variables fitted in the model and reduce the less important variables. To choose control variables, two

ML tools, Random forest regression and Gradient boosting regression, are used in this study. Random

forest is a commonly used supervised model which depends on two critical frameworks: Node of a tree

based on total variables to be used and quantity of the construction of tree to be used (Ponraj and

6Sinh−1x = ln[x+
√
x2 + 1]
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Vigneswaran [2020]). It can identify the features associated with the outcomes via variable Importance

Measures (VIMS) (Janitza and Boulesteix [2016]). Gradient boost is another supervised learning method

that utilizes a weak learning decision tree to develop a robust learner algorithm using the loss function

(Natekin and Knoll [2013]). Gradient boost generally outperforms random forest.

There are various metrics that can be used to assess the model’s efficiency. This paper utilizes

Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE)

metrics to select the control variables that better fit the model. The MAE measures the average of the

absolute difference between true and predicted value (Equation 8). MSE measures the average of the

squared difference between the true and predicted value (Equation 9). RMSE is the the square root of

MSE (Equation 10). Table 2 and 3 represent the performance of the different combinations of control

variables in predicting the log of weighted air emissions and log of weighted cross-media water emissions.

X1, X2, and X3 represent the dummy control variables: county nonattainment status, parent firm’s

entity as public, and industry belonging to low abatement cost, respectively. T takes the value of 1 for

the treatment group and 0 for the control group. For each combination of control variables, the first,

second, and third rows represent the error terms for the entire sample, treatment group, and control

group, respectively. The best combination of control variables generates smaller values for MAE, MSE,

and RMSE. Based on the performance analysis, the best combination of control variables is ‘county

nonattainment status’, ‘public’, and ‘abatement cost’ for both air and cross-media water emissions.

Because compared to other combinations, this set of control variables, in most cases, provide smaller

values for MAE, MSE, and RMSE.

MAE =
1

N

i=1∑
N

|yi − ŷ| (8)

MSE =
1

N

i=1∑
N

(yi − ŷ)2 (9)

RMSE =

√√√√ 1

N

i=1∑
N

(yi − ŷ)2 (10)

yi = Actual value ŷ = Predicted V alue N = Number of observations
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Table 2: Control variables selection in predicting log of weighted air emissions

Random forest regression Gradient Boosting Regression

Performance
measure
Models

MAE MSE RMSE MAE MSE RMSE

T,X1-X3 2.63 10.24 3.20 2.63 10.20 3.19
T= 1 2.74 10.80 3.29 2.90 12.22 3.50
T =0 2.63 10.35 3.22 2.63 10.37 3.22

T,X1,X2 2.66 10.62 3.26 2.67 10.60 3.26
T= 1 2.74 10.98 3.31 3.00 12.69 3.56
T =0 2.68 10.85 3.29 2.68 10.86 3.30

T,X1,X3 2.63 10.25 3.20 2.64 10.42 3.23
T= 1 2.73 10.70 3.27 2.94 12.15 3.49
T =0 2.63 10.40 3.22 2.63 10.37 3.22

T,X2,X3 2.65 10.39 3.22 2.66 10.37 3.22
T= 1 2.72 10.55 3.25 2.86 11.57 3.40
T =0 2.65 10.47 3.24 2.65 10.49 3.24

Notes: This table shows the impact of different types of predictors on model performance in predicting

individual outcomes for weighted air emissions. X1, X2, & X3 represent the dummy control variables:

county non-attainment status, parent firm’s entity as public, & industry belonging to low abatement

cost, respectively. MAE, MSE, & RMSE represent Mean Absolute Error, Mean Squared Error, & Root

Mean Squared Error, respectively. T takes the value of 1 for the treatment group & 0 for the control

group. For each combination of control variables, the first, second, & third rows represent the error

terms for the entire sample, treatment group, and control group, respectively. The best combination

of control variables generates smaller values for MAE, MSE, & RMSE.

Table 3: Control variables selection in predicting log of crossmedia weighted water emissions

Random forest regression Gradient Boosting Regression

Performance
measure
Models

MAE MSE RMSE MAE MSE RMSE

T,X1-X3 2.54 9.44 3.07 2.59 10.05 3.17
T= 1 2.39 9.88 3.14 1.80 4.93 2.22
T =0 2.51 9.11 3.02 2.61 10.14 3.18

T,X1,X2 2.74 10.60 3.26 3.19 13.80 3.72
T= 1 2.81 12.21 3.49 1.71 4.56 2.13
T =0 2.68 10.27 3.20 3.21 13.83 3.72

T,X1,X3 2.60 9.85 3.14 2.67 10.71 3.27
T= 1 2.51 9.75 3.12 1.82 5.08 2.25
T =0 2.58 9.72 3.12 2.71 10.64 3.26

T,X2,X3 2.58 9.62 3.10 2.61 10.10 3.18
T= 1 2.33 9.59 3.10 1.82 4.39 2.10
T =0 2.54 9.34 3.06 2.62 10.21 3.19

Notes: This table shows the impact of different types of predictors on model performance in predicting

individual outcomes for weighted cross-media water emissions. X1, X2, and X3 represent the dummy

control variables: county non-attainment status, parent firm’s entity as public, & industry belonging to

low abatement cost, respectively. MAE, MSE, & RMSE represent Mean Absolute Error, Mean Squared

Error, & Root, Mean Squared Error, respectively. T takes the value of 1 for the treatment group and 0

for the control group. For each combination of control variables, the first, second, & third rows represent

the error terms for the entire sample, treatment group, and control group, respectively. The best

combination of control variables generates smaller values for MAE, MSE, & RMSE.
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5 Results

5.1 Air Emissions

In Figure 3, sub-figures (a) and (b) plot the impact of non-compliance status on the manufacturing

sister plants’ log of weighted air emissions without and with the control group, respectively. Sub-figures

(c) and (d) plot the impact of non-compliance status on the manufacturing sister plants’ log of weighted

CAA regulated pollutants’ emissions without and with the control group, respectively. In all sub-figures

of Figure 3, to the right of the zero, the blue line on the figure shows an estimation of the effect of sister

plants’ non-compliance status on compliant plants’ weighted emissions for both the current year and

later years. To the left of the zero, lead 2 represents the placebo estimate, and lead 1 is normalized to

zero. Standard errors are calculated from a 95% confidence interval.

Sub-figures (a) and (b) illustrate weighted air emissions go down in the treatment year, and the

downward trend continues till one year after the treatment. The emissions trend slightly increases after

the ’lag-1’ period, but the treatment effect is still negative in the ’lag-2’ period. Sub-figures (c) and (d)

also depict that non-compliant status of sister plant(s) lessens the CAA-regulated weighted air emissions

in the treatment and later years. The negative treatment effect in the current and later years implies

that compliant plants become more cautious about reducing emissions due to the violation status of any

sister facility to avoid punishment in the future.

Table 4 provides the coefficients, and standard errors of five indicator variables Dt−k from equation

5 for total weighted air emissions and CAA regulated pollutants’ weighted air emissions. The sample

is restricted to 328 plants (2,624 observations), 2,918 plants (23,344 observations), 313 plants (2,504

observations) and 2,436 plants (19,488 observations) for column (1), (2), (3) and (4) respectively. All

specifications control for year fixed effects, plant fixed effects, and industry time fixed effects. Standard

errors are clustered at the plant level. In all four columns, the coefficient of the lead−2 variable (two

years before treatment) is insignificant, which meets the criteria of parallel trend assumption.

Columns (1) and (2) display the treatment effect on the log of weighted emissions without and with the

control group, respectively. Column (1) reports compliant plant(s) being associated with non-compliant

sister plant(s) reduces weighted air emissions by 12.47 percent in the treatment year.7 The plant(s) also

7From Bellemare and Wichman (2019), For an estimable equation, ŷ = α + βd + ε, where d is a dichotomous variable

containing 0 and 1. The percentage change in y associated with a change from d = 0 to d = 1 is exp(β̂)− 1.
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(a) Log of Weighted Air Emissions without Control Group (b) Log of Weighted Air Emissions with Control Group

(c) Log of Weighted CAA pollutants’ Emissions without Control Group (d) Log of Weighted CAA pollutants’ Emissions with Control Group

Note: Figures (a) and (b) plot the impact of non-compliance status on the manufacturing sister plants’ log of

weighted air emissions without and with the control group, respectively. Figures (c) and (d) plot the impact of

non-compliance status on the manufacturing sister plants’ log of weighted CAA regulated pollutants’ emissions without

and with the control group, respectively. In figures (a), (b), (c) & (d), to the right of the zero, the blue line on the

figure shows an estimation of the effect of sister plants’ non-compliance status on compliant plants’ weighted emissions

for both the current year and later years. To the left of the zero, lead 2 represents the placebo estimate, and lead 1 is

normalized to zero. The figures illustrate a downward trend in weighted emissions that start from the treatment period

and continue until one year after the treatment. Overall, weighted emissions are lower in the post-treatment period than

in the pre-treatment period. The data frame is between 2005-2012. Standard errors are calculated from a 95% confidence

interval.

Figure 3: Stacked Event Study Figures for Weighted Air Emissions & CAA Regulated Pollutants’ Emissions

reduces weighted air emissions by 18.44 and 14.04 percent, respectively, in the lag-1 and lag-2 periods.

The results of column (1) are significant at the conventional level. Column (2) illustrates in one year

after the treatment, total weighted air emissions decreased by 14.44 percent more in compliant plants

associated with non-compliant sister plant(s) than in compliant plants that do not, which is statistically

significant at the 5 percent level. In lag-2 periods, the treated plant reduces weighted air emissions by

11.81 percent compared to non-treated plants, and the result is significant at 10 percent level. Therefore,

the treatment effect keeps on in later years. Columns (3) and (4) illustrate the effect of treatment on the

log of weighted CAA regulated pollutants’ emissions without and with the control group, respectively.
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Table 4: Log of Weighted Air Emissions and Log of CAA Regulated Pollutants’ Emissions

(1) (2) (3) (4)
Variable log(A) log(A) log(CAA) log(CAA)

Constant 5.6224*** 5.0653*** 5.2325*** 4.6368***
(0.103) (0.081) (0.114) (0.098)

Abatement Cost- low -0.4373*** -1.5268*** -0.0383*** -1.3244***
(0.152) (0.071) (0.163) (0.081)

County Non-attainment -0.2739 -0.0983 -0.2794 -0.1344
(0.190) (0.072) (0.242) (0.086)

Public 0.1824*** 0.0552*** 0.2425*** 0.1746***
(0.034) (0.006) (0.038) (0.008)

2 year before treatment 0.0207 0.0163 -0.0189 -0.0173
(0.070) (0.072) (0.068) (0.068)

1 year before treatment 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Treatment year -0.1332** -0.0753 -0.1012 -0.0609
(0.064) (0.066) (0.069) (0.072)

1 year after treatment -0.2038*** -0.1559** -0.1424* -0.0928
(0.070) (0.072) (0.066) (0.078)

2 year after treatment -0.1513** -0.1257* -0.0596 -0.0408
(0.063) (0.069) (0.071) (0.074)

N 2,624 23,344 2,504 19,488
R-Squared 0.946 0.930 0.942 0.931
Unique Facilities 328 2,918 313 2,436
Control Group No Yes No Yes
Facility FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry-time trends Yes Yes Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact of plants’ non-compliance status on the
manufacturing sister plants’ log of weighted air emission (columns (1) & (2))and log of CAA regulated pollutants’ weighted
emissions (columns (3) & (4)) during the sample time frame of 2005–2012. Columns (1) & (3) only include the compliant
plants associated with noncompliant sister plants. Columns (2) & (4) also include the plants with no history of non-compliance
with their sister plants. Standard errors are clustered at the plant level. Std. error in parenthesis. ∗ indicates significance at
10%, ∗∗ indicates significance at 5%, ∗ ∗ ∗ indicates Significance at 1%.

Even though the treatment effect is negative, the results are not significant at the conventional level.

Figure 4 displays the impact of the plant’s HPV status on the manufacturing sister plants’ log of

weighted CAP & HAP emissions without and with the control group. Figure 4 (a) and (b) depict the

log of weighted CAP emissions decline in the year of treatment. The falling emissions trend continues in

the lag-1 period and and emissions start to rise in the lag-2 period. Figure 4 (c) and (d) illustrate log of

weighted HAP emissions diminishes in the year of treatment, and the downturn continues in lag-1 and

lag-2 periods. Specifically, similar emissions trends are observed in figure 4 in line with figure 3.

Table 5 illustrates the stacked event study results from equation 5 for the log of total weighted CAP

emissions and log of total weighted HAP emissions. The sample contains 291 plants (2,328 observations),

2,453 plants (19,624 observations), 220 plants (1,760 observations) and 1,384 plants (11,072 observations)

for columns (1), (2), (3) and (4) respectively. All specifications control for year fixed effects, plant fixed

effects, and industry time fixed effects. Standard errors are clustered at the plant level. In all four
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(a) Log of Weighted CAP Emissions without Control Group (b) Log of Weighted CAP Emissions with Control Group

(c) Log of Weighted HAP Emissions without Control Group (d) Log of Weighted HAP Emissions with Control Group

Note: Figures (a) and (b) plot the impact of non-compliance status on the manufacturing sister plants’ log of

weighted CAP emissions without and with the control group, respectively. Figures (c) and (d) plot the impact of

non-compliance status on the manufacturing sister plants’ log of weighted HAP emissions without and with the control

group, respectively. In figures (a), (b), (c) & (d), to the right of the zero, the blue line on the figure shows an estimation

of the effect of sister plants’ non-compliance status on compliant plants’ weighted emissions for both the current year and

later years. To the left of the zero, lead 2 represents the placebo estimate, and lead 1 is normalized to zero. The figures

illustrate a reduction in weighted emissions in lag-0 and lag-1 periods. After a downward trend till lag-1, weighted CAP

emissions sharply start to increase, but the treatment effect is still negative in the lag-2 period. The data frame is between

2005-2012. Standard errors are calculated from a 95% confidence interval.

Figure 4: Stacked Event Study Figures for Weighted CAP & HAP Emissions

columns, insignificant coefficients of the lead−2 variable support that the parallel trend assumption

is met. Column (2) illustrates log of weighted CAP emissions diminishes by 10.30 and 12.12 percent

in lag-0 and lag-1 periods, respectively. Column (4) predicts the log of weighted HAP emissions goes

down by 11.81 percent one year after the treatment. The results are significant at the 10 percent level.

Overall, Tables 4 and 5 suggest compliant manufacturing plant(s) reduce weighted air emissions in the

post-treatment periods. The results also suggest that manufacturing plants with a low cost of pollution

abatement are more likely to have a low level of emissions, and plants belonging to public parent firms

are more likely to emit more.
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Table 5: Log of CAP Emissions and Log of HAP Emissions

(1) (2) (3) (4)
Variable log(CAP ) log(CAP ) log(HAP ) log(HAP )

Constant 5.1053*** 4.2248*** 5.4476*** 4.1286***
(0.090) (0.070) (0.098) (0.082)

Abatement Cost- low -0.0933*** -1.0941*** -0.4007*** -0.7555***
(0.112) (0.070) (0.116) (0.078)

County Non-attainment -0.1387 -0.0769 -0.1413 -0.1219
(0.183) (0.059) (0.311) (0.076)

Public -0.0153 0.2576*** 0.0107 0.4775***
(0.032) (0.007) (0.028) (0.009)

2 year before treatment -0.0551 -0.0514 -0.0226 -0.0009
(0.063) (0.061) (0.065) (0.065)

1 year before treatment 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Treatment year -0.1234* -0.1087* -0.0537 -0.0551
(0.067) (0.064) (0.076) (0.074)

1 year after treatment -0.1331* -0.1292* -0.1015 -0.1257*
(0.073) (0.073) (0.079) (0.076)

2 year after treatment -0.0269 -0.0300 -0.0290 -0.0912
(0.062) (0.063) (0.076) (0.074)

N 2,328 19,624 1,760 11,072
R-Squared 0.936 0.927 0.936 0.931
Unique Facilities 291 2,453 220 1,384
Control Group No Yes No Yes
Facility FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry-time trends Yes Yes Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact of plants’ non-compliance status on the
manufacturing sister plants’ log of weighted CAP emission (columns (1) & (2))and log of weighted HAP emissions (columns
(3) & (4)) during the sample time frame of 2005–2012. Columns (1) & (3) only include the compliant plants associated with
noncompliant sister plants. Columns (2) & (4) also include the plants with no history of non-compliance with their sister
plants. Standard errors are clustered at the plant level. Std. error in parenthesis. ∗ indicates significance at 10%, ∗∗ indicates
significance at 5%, ∗ ∗ ∗ indicates Significance at 1%.

5.2 Damage from Volatile Organic Compound (VOC) and PM2.5

Using the mapping from TRI chemical to criteria pollutant (Greenstone [2003]) and the AP3 database

(Muller and Mendelsohn [2007]), I estimate the change in compliant plant’s air damage from VOC and

PM2.5 without and with the control group. Figure 5 depicts the effect of sister facility(s)’s non-compliant

status on compliant plant’s air damage from VOC and PM2.5 using specification 6. Figure 5 (a) and

(b) illustrate a downward trend in weighted damage till lag-1, and weighted damage start to increase

again, but the treatment effect is still negative in the lag-2 period. The trend of weighted damage from

emissions due to the treatment effect is similar to that of weighted CAP emissions plotted in Figure 5.

Table 6 displays the regression coefficients of indicator variables, Dt−k from equation 7 for total

weighted damage from VOC and PM2.5 without (column 1) and with the control group (column 2).

In columns (1) & (2), the coefficient of lead two is insignificant, which lends credibility to the parallel

trend assumption. Column (1) illustrates a reduction in damage from air emissions in the treatment
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(a) Log of Weighted Damage without Control Group (b) Log of Weighted Damage with Control Group

Note: Figures (a) & (b) plot the impact of non-compliance status on the manufacturing sister plants’ log of

weighted Damage from VOC & PM2.5 without and with the control group, respectively. In figures (a) & (b) to the

right of the zero, the blue line on the figure shows an estimation of the effect of sister plants’ non-compliance status on

compliant plants’ weighted damage for both the current year and later years. To the left of the zero, lead 2 represents the

placebo estimate, and lead 1 is normalized to zero. The figures illustrate a downward trend in weighted damage till lag-1,

and weighted damage start to increase again, but the treatment effect is still negative in the lag-2 period. The data frame

is between 2005-2012. Standard errors are calculated from a 95% confidence interval.

Figure 5: Stacked Event Study Figures for Weighted Damage from VOC & PM2.5

Table 6: Stacked Event Analysis of the change in Emissions Damage

(1) (2)
Variable log(Damage) log(Damage)

Constant 13.9617*** 14.3444***
(0.125) (0.078)

Abatement Cost- low -0.1828 -0.9638***
(0.213) (0.083)

County Non-attainment 0.1264 -0.1165*
(0.161) (0.064)

Public 0.8104*** 0.3519***
(0.044) (0.009)

2 year before treatment -0.0373 0.0138
(0.074) (0.071)

1 year before treatment 0.000 0.000
(0.000) (0.000)

Treatment year -0.1081 -0.0422
(0.069) (0.068)

1 year after treatment -0.1466* -0.1063
(0.076) (0.075)

2 year after treatment -0.0545 -0.0224
(0.066) (0.064)

N 2,208 17,072
R-Squared 0.958 0.934
Unique Facilities 276 2,134
Control Group No Yes
Facility FE Yes Yes
Year FE Yes Yes
Industry-time trends Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact of
plants’ non-compliance status on the manufacturing sister plants’ log of weighted
Damage from emissions during the sample time frame of 2005–2012. Columns
(1) only includes the compliant plants associated with non-compliant sister plants.
Columns (2) also includes the plants with no history of non-compliance with their
sister plants. Standard errors are clustered at the plant level. Std. error in paren-
thesis. ∗ indicates significance at 10%, ∗∗ indicates significance at 5%, ∗∗∗ indicates
Significance at 1%.
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group in the post-treatment period, and the corresponding coefficient in the lag-1 period is statistically

significant. Nevertheless, the treatment effect is still negative with the inclusion of the control group in

column (2); the coefficients of lag periods are not statistically significant. Hence, we cannot conclude

that the non-compliance status of the sister facility lessens the damage from air emissions of criteria

pollutants for the compliant plants. However, in line with previous results, table 6 suggests that plants

with a low cost of pollution abatement are less likely to have a high level of damage, and plants that

belong to public parent firms are more likely to have a high level of damage from emissions.

5.3 Cross-media Water Emissions

Figure 6 illustrates the effect of non-compliance status on sister facilities’ cross-media weighted water

emissions from equation 7. The sample is restricted to 87 plants (696 observations) & 481 plants (3,848

observations) for columns (1) & (2), respectively, with two years of leads and lags. It depicts a rise in

the log of weighted water emissions of the compliant plant(s) in the concurrent period of HPV status of

the sister facility(s). After a sharp rise in the plant’s weighted water emissions in the treatment year, a

gradual decrease is observed in the post-treatment period, and the treatment effect becomes negative in

the lag-2 period. Nevertheless, HPVP is implemented to regulate air emissions, and the HPV status of

plant(s) also changes sister plants’ cross-media water emissions.

(a) Log of Weighted Cross-media Water Emissions without Control Group (b) Log of Weighted Cross-media Water Emissions with Control Group

Note: Figures (a) & (b) plot the impact of non-compliance status on the manufacturing sister plants’ log of

weighted cross-media water emissions without and with the control group, respectively. In figures (a) & (b) to the right of

the zero, the blue line on the figure shows an estimation of the effect of sister plants’ non-compliance status on compliant

plants’ weighted damage for both the current year and later years. To the left of the zero, lead 2 represents the placebo

estimate, and lead 1 is normalized to zero. The figures illustrate cross-media weighted water emissions go up at lag-0

period and the emissions start to decline and the treatment effect is eventually negative in two years after the treatment.

The data frame is between 2005-2012. Standard errors are calculated from a 95% confidence interval.

Figure 6: Stacked Event Study Figures for Weighted Cross-media water Emissions
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Table 7: Stacked Event Analysis of the change in Crossmedia Water Emissions

(1) (2)
Variable log(Water) log(Water)

Constant 5.1757*** 4.3484***
(0.127) (0.109)

Abatement Cost- low -3.9775*** -1.2288***
(0.354) (0.122)

County Non-attainment 0.1390 0.3095**
(0.184) (0.130)

Public 0.7710*** 0.5338***
(0.059) (0.025)

2 year before treatment -0.1620 -0.0567
(0.133) (0.139)

1 year before treatment 0.000 0.000
(0.000) (0.000)

Treatment year 0.1769* 0.2185**
(0.104) (0.094)

1 year after treatment 0.0514 0.0609
(0.174) (0.178)

2 year after treatment -0.0375 -0.0464
(0.104) (0.113)

N 696 3,848
R-Squared 0.960 0.928
Unique Facilities 87 481
Control Group No Yes
Facility FE Yes Yes
Year FE Yes Yes
Industry-time trends Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact
of plants’ non-compliance status on the manufacturing sister plants’ log of weighted
crossmedia water emissions during the sample time frame of 2005–2012. Columns
(1) only includes the compliant plants associated with non-compliant sister plants.
Columns (2) also includes the plants with no history of non-compliance with their
sister plants. Standard errors are clustered at the plant level. Std. error in paren-
thesis. ∗ indicates significance at 10%, ∗∗ indicates significance at 5%, ∗∗∗ indicates
Significance at 1%.

Table 7 illustrates the coefficients and standard errors of the indicator variables, Dt−k from equation 7

for cross-media total weighted water emissions. All specifications control for year fixed effect, plant fixed

effect, and industry time fixed effect, and the standard errors are clustered at the plant level. In columns

(1) & (2), the coefficient of the lead−2 variable is insignificant, which meets the criteria of parallel trend

assumption. Column (1) reports compliant plant(s) increase weighted water emissions by 19.35 percent

in the treatment year associated with the non-compliant status of sister plant(s), which is statistically

significant. Column (2) illustrates that, on average, a compliant plant increases cross-media weighted

water emissions by about 24.42 percent connection with the non-compliant status of sister plant(s) than

in compliant plant that does not. The result is significant at the 5 percent level. The weighted water

emissions gradually decrease from the lag-1 period, and the treatment effect becomes negative in the

lag-2 period; however, the coefficients of lag-1 and lag-2 periods are not significant. Intuitively, detecting
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a plant’s violation in emitting via air medium increases the likelihood of monitoring the offender’s sister

plants air emissions. As a result, firms change their medium of emissions in the concurrent year to

continue the production and avoid the penalty from air regulation. With the adoption of pollution

abatement technology for reducing air emissions in the later years, firms start back emitting via old

media and reduce cross-media water emissions. To summarize, regulation on non-compliant sister plant’s

air emissions also alters the cross-media weighted water emissions of the compliant plant.

6 Robustness Check

The robustness of the causal interpretation of the results is validated through the placebo treatment.

This study considers the ‘false treatment’ takes the value of one for the compliant plant with a sister

plant(s) concurrently under violation but not related to emissions that exceed the allowable limits. Put

differently; I consider the violations that are not related to exceeding emissions limit. The considered

violation includes violation that affects synthetic minor status (G3), enforcement violation (G4), title

V certification violation (G5), title V permit application violation (G6), etc. With the false treatment,

there should not be any significant change in the log of weighted air emissions and log of cross-media

water emissions. Hence, the finding in section five will be validated if the coefficients of leads and lags

variables from the false treatment effect are not statistically significant.

Table 8 reports regression coefficients of ‘lead’ and ‘lag’ periods from equation 5 for the log of total

weighted air emissions, log of CAP emission, and log of HAP emissions without and with the control

group. The results are presented in Table 8, which illustrates the estimation of the treatment effect in

the treatment period and two lag periods are statistically insignificant for all cases. Hence, the placebo

test demonstrates that the compliant plants do not alter the level of weighted air emissions when the

violating sister plant(s) belongs to a category of HPV violation other than GC8 and/or Matrix criteria.

The test rules out the firm-level shock that could have driven the findings. Therefore, the compliant

plant’s responses associated with the violation status of non-compliant sister plants, by reducing weighted

air emissions, are not based on sample selection.

Table 9 reports regression coefficients of indicator variables for the log of cross-media water emissions

without and with the control group. Columns (1) and (2) illustrate the change in the log of weighted

cross-media water emissions due to treatment effect in the treatment and later periods are not statistically
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Table 8: Robustness Check for Air Emissions

(1) (2) (3) (4) (5) (6)
Variable log(Air) log(Air) log(CAP ) log(CAP ) log(HAP ) log(HAP )

Constant 1.8837*** 2.0024*** 6.4666*** 4.3561*** 4.2434*** 4.1708***
(0.084) (0.029) (0.262) (0.097) (0.185) (0.097)

Abatement Cost- low 0.3200*** -0.2977*** -0.2392 -1.1939*** 0.5239*** -0.8027***
(0.056) (0.026) (0.209) (0.090) (0.139) (0.100)

County Non-attainment 0.0920 -0.0091 0.1562 -0.0081 0.0065 0.0084
(0.100) (0.029) (0.251) (0.080) (0.169) (0.078)

Public -0.0545* 0.0041 0.7563*** 0.2417*** 0.0088 0.4576***
(0.058) (0.004) (0.118) (0.012) (0.110) (0.019)

2 year before treatment -0.0223 -0.0350 -0.0083 -0.0364 -0.0038 0.0274
(0.028) (0.030) (0.106) (0.105) (0.110) (0.124)

1 year before treatment 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Treatment year -0.0125 -0.0143 -0.0030 0.0132 -0.0728 0.0095
(0.030) (0.030) (0.107) (0.099) (0.103) (0.106)

1 year after treatment 0.0325 0.0183 0.0062 -0.0446 -0.0513 0.0084
(0.030) (0.027) (0.089) (0.082) (0.108) (0.108)

2 year after treatment 0.0478 0.0381 0.1076 0.0623 0.1116 0.1509
(0.032) (0.027) (0.094) (0.084) (0.112) (0.102)

N 1,736 14,760 1,368 12,504 904 6,448
R-Squared 0.894 0.889 0.923 0.921 0.948 0.942
Unique Facilities 217 1,845 171 1,563 113 806
Control Group No Yes No Yes No Yes
Facility FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Industry-time trends Yes Yes Yes Yes Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact of plants’ non-compliance status on the
manufacturing sister plants’ log of weighted Air emission (columns (1) & (2)), log of weighted CAP emissions (columns (3) &
(4)), and log of weighted HAP emissions (columns (5) & (6)) during the sample time frame of 2005–2012. Columns (1),(3) & (5)
only include the compliant plants associated with noncompliant sister plants. Columns (2), (4) & (6) also include the plants with
no history of non-compliance with their sister plants. Standard errors are clustered at the plant level. Std. error in parenthesis.
‘False treatment’ takes the value of one for the compliant plant with a sister plant(s) concurrently under violation but not related
to emissions that exceed the allowable limits. ∗ indicates significance at 10%, ∗∗ indicates significance at 5%, ∗ ∗ ∗ indicates
Significance at 1%.

significant for all cases. Hence, the placebo test illustrates that plant’s different category of HPV violation

other than exceeding the maximum allowable emissions limit does not affect the cross-media water

emissions of the sister plant. Therefore, the compliant plant’s responses associated with the sister plant’s

violation of exceeding the emissions limit by increasing weighted cross-media water emissions are not

predicated on sample selection.

7 Conclusion

Despite the well-documented advantages of environmental regulations, the effectiveness of the regu-

lations sometimes becomes doubtful with the criticism of pollution leakage by the economics literature.

An estimation of the sign and magnitude of emissions spillover among the sister plants can give a true

idea regarding the effectiveness of regulation. This study investigates the impact of the High Priority
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Table 9: Robustness Check for Cross-media Water Emissions

(1) (2)
Variable log(Water) log(Water)

Constant 1.9644*** 4.2175***
(0.607) (0.179)

Abatement Cost- low -0.0568 -0.9696***
(0.328) (0.121)

County Non-attainment 1.3725 0.1377
(1.033) (0.215)

Public 1.4811*** 0.2464***
(0.366) (0.045)

2 year before treatment -0.1324 -0.0063
(0.284) (0.194)

1 year before treatment 0.000 0.000
(0.000) (0.000)

Treatment year -0.0278 0.0809
(0.185) (0.160)

1 year after treatment -0.1188 0.0657
(0.291) (0.325)

2 year after treatment -0.2177 -0.1694
(0.256) (0.222)

N 264 2,264
R-Squared 0.915 0.923
Unique Facilities 33 283
Control Group No Yes
Facility FE Yes Yes
Year FE Yes Yes
Industry-time trends Yes Yes

Notes: This table reports the Stacked Event Study Design outcome of the impact
of plants’ non-compliance status on the manufacturing sister plants’ log of weighted
crossmedia water emissions during the sample time frame of 2005–2012. Columns
(1) only includes the compliant plants associated with non-compliant sister plants.
Columns (2) also includes the plants with no history of non-compliance with their
sister plants. Standard errors are clustered at the plant level. Std. error in paren-
thesis. ‘False treatment’ takes the value of one for the compliant plant with a sister
plant(s) concurrently under violation but not related to emissions that exceed the
allowable limits. ∗ indicates significance at 10%, ∗∗ indicates significance at 5%,
∗ ∗ ∗ indicates Significance at 1%.

Violation Policy (HPVP) under the Clean Air Act (CAA) on the compliant plant’s emissions associated

non-compliant status of the sister plants. HPVP applies a high degree of regulatory scrutiny to detect

the level of emissions of non-compliant plants and brings those facilities back to compliant status through

rigorous monitoring. I document that HPV status reduces the weighted air emissions of compliant sister

facility(s) associated with the non-compliant plant(s) in the concurrent and later years. I also show that

the offender’s compliant sister plant increases cross-media weighted water emissions in the concurrent

year of HPV status.

Using a stacked event study methodology, I find that manufacturing compliant plants decrease total

weighted air emissions by 11.81 to 14.44 percent, total weighted CAP emissions by 10.10 to 12.12 percent,

total weighted Hazardous Air Pollution (HAP) by approximately 11.81 in the post-treatment period, if
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one of their sister facilities with the same 6-digit NAICS code is under HPV violation. I also find that

the cross-media weighted water emissions of compliant manufacturing facilities go up by approximately

24.42 percent associated with concurrent violation status of at least one of its sister concern. The results

also encourage further research on whether compliant plants’ emission volume varies with the number of

violating sister plants or the degree of monitory penalty. Even though the key focus of this paper is on

the High Priority Violation Policy (HPVP), the same approach can be applied in other settings to test

the effectiveness of different regulations under the Clean Air Act and Clean Water Act.
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Appendix

Source: The timely and appropriate enforcement response to high priority violations (hpvs). The Envi- ronmental Protec-

tion Agency, 1999.

Figure 7: HPV Applicability Determination Flow Chart
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