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Abstract

This paper proposes new jackknife IV estimators that are robust to the effects of many weak
instruments and error heteroskedasticity in a cluster sample setting with cluster-specific effects
and possibly many included exogenous regressors. The estimators that we propose are designed
to properly partial out the cluster-specific effects and included exogenous regressors while pre-
serving the re-centering property of the jackknife methodology. To the best of our knowledge,
our proposed procedures provide the first consistent estimators under many weak instrument as-
ymptotics in the setting considered. We also present results on the asymptotic normality of our
estimators and show that t-statistics based on said estimators are asymptotically normal under
the null and consistent under fixed alternatives. Monte Carlo results show that our t-statistics
perform better in controlling size in finite samples than those based on alternative jackknife IV
procedures previously introduced in the literature.
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1 Introduction

The problem of endogeneity remains central to research in economics and econometrics. The

key reason for this is that there are many different regression settings for which endogeneity is
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an issue, but for which valid estimators are not currently available. One such setting involves

the case where the objective is to estimate an IV regression with fixed effects using panel or

cluster-sampled data in situations where the number of available instruments may be large, but

where the instruments themselves are all only weakly correlated with the endogenous regressors.

There is now a substantial literature on estimation and inference under many weak instruments,

including Chao and Swanson (2005), Stock and Yogo (2005), Hansen, Hausman, and Newey (2008),

Hausman et al. (2012), Chao et al. (2012, 2014), Bekker and Crudu (2015), Crudu, Mellace, and

Sándor (2020), and Mikusheva and Sun (2021). However, the analyses given in these papers are

for cross-sectional data, thus precluding panel data or cluster sampling settings where there is

additional unobserved heterogeneity modeled by fixed or cluster-specific effects. Moreover, even in

the cross-sectional context, 2SLS and the LIML estimators are not well behaved under many weak

instruments. In particular, Chao and Swanson (2005) and Stock and Yogo (2005) show that the

2SLS estimator is inconsistent under many weak instrument asymptotics, even when the errors are

homoskedastic. In addition, Hausman et al. (2012) and Chao et al. (2012) point out that LIML is

also inconsistent under many weak instruments when there is error heteroskedasticity. Estimators

which are currently known to be robust to the effects of many weak instruments in cross sectional

settings with error heteroskedasticity all have a jackknife form, as discussed in Chao and Swanson

(2004), Chao et al. (2012), and Hausman et al. (2012). These include the JIVE1 and JIVE2

estimators studied in Angrist, Imbens, and Krueger (1999), for example. For further discussion,

see Phillips and Hale (1977), Blomquist and Dahlberg (1999), Ackerberg and Devereux (2009),

and Bekker and Crudu (2015). These papers again only study various versions of the jackknife IV

estimator in a cross-sectional setup without fixed effects.

The goal of this paper is to consider the problem of many weak instruments in a panel data

or cluster-sampling framework with fixed or cluster specific effects. In addition to the presence

of unobserved heterogeneity, our setup allows for additional (included) exogenous regressors which

appear in both the outcome, or structural, equation and in the first-stage equations. To consistently

estimate the structural parameter vector of interest in an IV regression with fixed or cluster-specific

effects, we propose three new estimators, which we refer to by the acronyms FEJIV, FELIM, and

FEFUL. These estimators are so named as they are modified versions and generalizations, respec-

tively, of the jackknife IV (JIV), the LIML, and the Fuller (1977) estimators. In contrast to the

original JIV, LIML, and Fuller estimators, our new estimators are designed to be robust to the

effects of many weak instruments and error heteroskedasticity, even in the presence of additional

complications caused by having fixed or cluster-specific effects and many included exogenous re-

gressors. To achieve consistency in our setting requires an estimator that not only properly partials

out additional covariates and cluster-specific effects, but at the same time must also be properly
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centered in a form similar to a degenerate U-statistic. It turns out that accomplishing both of these

objectives simultaneously is quite challenging. While a number of innovative JIV-type estimators

have been proposed recently (see, for example, the improved jackknife estimator IJIVE of Ackerberg

and Devereux (2009), as well as the UJIVE estimator of Kolesár (2013)), due to the aforementioned

diffi culties, these estimators are not consistent when applied to our setting under many weak in-

strument asymptotics, as we shall elaborate on in greater detail in Section 3. On the other hand,

the estimation procedures that we introduce here are carefully designed to properly partial out the

presence of fixed or cluster-specific effects and included exogenous regressors, while preserving the

re-centering property of the jackknife methodology. To the best of our knowledge, the estimators

presented here are the first consistent estimators under many weak instrument asymptotics in an

IV regression model with fixed or cluster-specific effects and possibly many included exogenous

regressors. In addition to consistency, we also establish the asymptotic normality of the FELIM

and FEFUL estimators1.

This paper also provides a number of results showing that hypothesis testing procedures based

on FELIM and FEFUL are robust to the effects of many weak instruments. In particular, we

construct t-statistics based on these two estimators and show that, when the null hypothesis is

true, these t-statistics converge to an asymptotic standard normal distribution under both many

weak instrument asymptotics and also standard asymptotics. Moreover, our t-statistics are shown

to be consistent in the sense that under fixed alternatives they diverge, with probability approaching

one, in the direction of the alternative hypothesis.

The many-weak-instrument asymptotic framework used in the sequel to analyze the perfor-

mance of FELIM and FEFUL was first proposed in Chao and Swanson (2005). This framework

extends earlier work by Morimune (1983) and Bekker (1994) on what has become known in the IV

literature as the many-instrument asymptotics or “Bekker asymptotics”, whereby a large sample

approximation is carried out by considering an alternative sequence where the number of instru-

ments is allowed to approach infinity as the sample size grows to infinity. A key difference between

the Bekker asymptotic framework and the many-weak-instrument asymptotic framework is the rate

of growth of the so-called concentration parameter. As has been pointed out by Phillips (1983) and

Rothenberg (1984), among others, the concentration parameter is the natural measure of instru-

ment strength in a linear IV model. In the original papers by Morimune (1983) and Bekker (1994),

1We do not provide a formal proof of the asymptotic normality of the FEJIV estimator because the results of
our Monte Carlo study, as reported in Section 6, show that FELIM and FEFUL tend to have better finite sample
properties than FEJIV. For this reason, we shall focus the presentation of our theoretical results on FELIM and
FEFUL only. However, one can easily show, by slightly modifying the arguments that we give for FELIM and
FEFUL, that FEJIV is also asymptotically normal, under many weak instrument asymptotics. Note also that our
simulation finding regarding the properties of FEJIV are consistent with the findings of Davidson and MacKinnon
(2006).
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the concentration parameter is assumed to grow at the same rate as the sample size, which is also

what is assumed under standard (strong but fixed number of instruments) asymptotics, whereas

the many-weak-instrument asymptotic framework allows the concentration parameter to grow at

a rate much slower than the sample size, thus allowing for much weaker instruments. Let µ2n be

a sequence that gives the rate of growth of the concentration parameter, and let K2,n denote the

number of instruments. Chao and Swanson (2005) show that for consistent point estimation to

be possible, a suffi cient condition is
√
K2,n/µ

2
n → 0, as K2,n, µ2n, n → ∞. This allows for the

possibility that µ2n is of an order smaller than K2,n which, in turn, can be of an order much smaller

than the sample size n. The original Bekker framework, on the other hand, requires K2,n, µ
2
n, and

n to all be of the same order of magnitude. Recent work by Mikusheva and Sun (2021) indicates

that the condition
√
K2,n/µ

2
n → 0, as K2,n, µ2n, n→∞ is not only suffi cient but also necessary for

consistency in point estimation and hypothesis testing2.

The rest of the paper is organized as follows. Section 2 provides some brief motivation for our

paper. Section 3 states the model, defines the FELIM, FEFUL, and FEJIV estimators, and provides

an explanation of how our estimators improve upon various alternative jackknife IV estimators that

have previously been proposed in the literature. Analytical results presented in Section 4 establish

that our estimators are consistent and asymptotically normally distributed. Section 5 shows how

to estimate the variances of the estimators and also provides asymptotic results for t-statistics

based on our estimators. Section 6 contains the results of a series of Monte Carlo experiments in

which the relative performance of our estimators is compared with that of extant estimators in the

literature. Section 7 concludes. Proofs of Theorem 1, Corollary 1, Theorems 4-5, and Corollaries

2-3 are presented in the Appendix to this paper. The proofs of Theorems 2 and 3 are longer and

are given in a supplemental Appendix3.

Before proceeding, we will first say a few words about some of the commonly used notations

in this paper. In what follows, we use λmin (A), λmax (A), and tr (A) to denote, respectively,

the minimal eigenvalue, the maximal eigenvalue, and the trace of a square matrix A, whereas A′

denotes the transpose of a (not necessarily square) matrix A. ‖a‖2 denotes the usual Euclid-
ean norm when applied to a (finite-dimensional) vector a. On the other hand, for a matrix

A, ‖A‖2 ≡ max
{√

λ (A′A) : λ (A′A) is an eigenvalue of A′A
}
denotes the matrix spectral norm,

while ‖A‖F ≡
√
tr {A′A} denotes the Frobenius norm and ‖A‖∞ ≡ max1≤i≤mn

∑mn

j=1
|aij | (i.e.,

2An alternative to the asymptotic framework considered here is the weak instrument asymptotic framework pro-
posed in Staiger and Stock (1997). The Staiger-Stock framework considers a setting where µ2n = O (1), in which case
the IV model is not point identified. We do not consider the Staiger-Stock framework in this paper because our focus
is on consistency of point estimation and on test consistency.

3The supplemental Appendix can be viewed at the URL: http://econweb.umd.edu/~chao/Research/research_files/
Supplemental_Appendix_to_Jackknife_Estimation_Cluster_Sample_IV_Model_August_20_2022.pdf
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the maximal row sum of an mn ×mn matrix). In addition, we use A ◦B to denote the Hadamard

product of two conformable matrices A and B (i.e., A ◦ B ≡ [aijbij ] , for A = [aij ] and B = [bij ]).

We take D (a) to be a diagonal matrix whose diagonal elements correspond with the elements of

the vector a, while D (A) is taken to be a diagonal matrix whose diagonal elements are the same as

the diagonal elements of the square matrix A. Furthermore, we will let ιp = (1, 1, ..., 1)′ denote a

p×1 vector of ones. Finally, we use CS and T, respectively, to denote the Cauchy-Schwarz and the

triangle inequality, and the abbreviation w.p.a.1 stands for “with probability approaching one”.

2 Some Background and Motivation

In this section, we briefly discuss some of the issues that arise when one needs to partial out

additional covariates in a setting with many weak instruments, with the hope that such a discussion

will provide the necessary background to help readers gain a stronger intuitive feel for the estimation

procedures which we will introduce in subsequent sections. To offer a point of contrast, we will

start by first reviewing some basic aspects of IV estimation under many weak instruments in the

context of a simple, cross-sectional model with a single endogenous regressor and no additional

covariate, i.e.,

y
n×1

= δ0
1×1

x
n×1

+ ε
n×1
,

x
n×1

= Z2
n×K2

πn
K2×1

+ u
n×1

Here, y is vector of observations on the outcome variable, x is the vector of observations on the

endogenous regressor, and Z2 is a non-random matrix of observations on the K2 instruments. In

addition, we intentionally specify the coeffi cient vector πn of the first-stage equation to depend

on n to allow for local-to-zero modeling of weak instruments4. Even in this simple setup, it is

well-known that, in the presence of many weak instruments and error heteroskedasticity, the usual

IV-type estimator such as 2SLS and LIML will not have desirable asymptotic properties. To see

this, consider the case of the 2SLS estimator. which in this case, can be decomposed as

δ̂2SLS − δ0 =
(
x′PZ2x

)−1
x′PZ2ε =

(
π′nZ

′
2Z2πn + 2π′nZ

′
2u+ u′PZ2u

)−1 (
π′nZ

′
2ε+ u′PZ2ε

)
(1)

where δ̂2SLS is of course obtained by minimizing the objective function

4See Assumption 3 in section 3 for the type of (generalized) local-to-zero structure which we assume for the more
general cluster-sample/panel-data IV regression setting studied in this paper.
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Q̂2SLS (δ) = (y − x′δ)′ PZ2 (y − x′δ) with PZ2 = Z2 (Z ′2Z2)
−1 Z ′2. Under conventional asymptotics

with a fixed number of strong instruments, the asymptotic behavior of the denominator x′PZ2x will

be dominated by the concentration parameter π′nZ
′
2Z2πn which in this case grows at the rate of the

sample size n, whereas π′nZ
′
2ε = Op (

√
n) and u′PZ2ε = Op (1) so that, in some sense, the signal in

the denominator overwhelms the noise elements in the numerator, leading to the consistency of the

2SLS estimator. Viewed from this perspective, the problem caused by having weak instruments is

that the signal component as represented by the concentration parameter π′Z ′2Z2π, is now weaker

and grows at some rate µ2n which is much slower than n. On the other hand, the problem caused

by many instruments is that it inflates one of the noise components u′PZ2ε which now grows, in

probability, at the rate K2. This combination of having stronger noise and a weaker signal can

then lead to inconsistency of the 2SLS estimator when µ2n/K2 = O (1). Note also that under

conventional, strong-instrument asymptotics the term u′PZ2ε is of a lower order relative to π′nZ
′
2ε

but this will no longer be true when µ2n/K2 = O (1), so having suffi ciently many weak instruments

leads to a reshuffl ing of the order of magnitude of the terms in the numerator of expression (1).

Now, one way to fix this problem in the case with no additional covariates is to use one of the

JIVE estimators proposed in Angrist, Imbens, and Krueger (1999). As an illustration, consider the

JIVE2 estimator proposed in that paper which can be obtained by minimizing a modified 2SLS

objective function whereby the diagonal elements of the projection matrix PZ2 are removed; that

is, the JIVE2 estimator is obtained by minimizing the objective function

Q̂JIV E2 (δ) =
(
y − x′δ

)′ [
PZ2 −D

(
PZ2

)] (
y − x′δ

)
where D

(
PZ2

)
is the diagonal matrix whose diagonal elements are the same as those of PZ2 . The

reason why such “jackknife-type" modification helps is that if we do a decomposition of JIVE2

similar to the decomposition given for 2SLS in expression (1) above, we obtain

δ̂JIV E2 − δ0 =
(
x′
[
PZ2 −D

(
PZ2

)]
x
)−1 (

π′nZ
′
2

[
PZ2 −D

(
PZ2

)]
ε+ u′

[
PZ2 −D

(
PZ2

)]
ε
)
.

Comparing the JIVE2 bilinear term u′
[
PZ2 −D

(
PZ2

)]
ε with its counterpart u′PZ2ε for the 2SLS

estimator, we see that the former has a smaller order of magnitude than the latter under a many

instrument asymptotic regime, so that, in particular, u′
[
PZ2 −D

(
PZ2

)]
ε = Op

(√
K2

)
whereas

u′PZ2ε = Op (K2). The reason why this is the case is related to the so-called concentration of

measure phenomenon that has been studied in the probability literature. Note that, under the

assumption that (εi, ui) is independent of (εj , uj) for all i 6= j (where εi and ui denote the ith

component of ε and u respectively); E
[
u′
[
PZ2 −D

(
PZ2

)]
ε
]

= 0, even under heteroskedasticity,

6



whereas E
[
u′PZ2ε

]
6= 0, so that the former, being a properly centered bilinear form, will have a

lower order of magnitude than the latter, which is not properly centered at zero5. It follows that

JIVE2 will be more robust to the effects of many weak instruments in the sense that it will be

consistent as long as the concentration parameter grows fast enough so that
√
K2/µ

2
n → 0, whereas

the consistency of the 2SLS requires the stronger condition that K2/µ
2
n → 0.

Consider next a more realistic model with additional covariates

y
n×1

= δ0
1×1

x
n×1

+ Z1
n×K1

ϕ
K1×1

+ ε
n×1
,

x
n×1

= Z1
n×K1

β
K1×1

+ Z2
n×K2

πn
K2×1

+ u
n×1

To see why it is not as straightforward as one might think to generalize the JIVE2 estimator

discussed previously to this setting, consider the IJIVE2 (the improved JIVE2) estimator discussed

in Evdokimov and Kolesár (2018). To construct the IJIVE2 estimator, one first partials out the

covariates Z1 to obtain the system of equations

ỹ = δ0x̃+ ε̃ (2)

x̃ = Z̃2π + ũ (3)

(where ỹ = MZ1y, x̃ = MZ1x, Z̃2 = MZ1Z2, ε̃ = MZ1ε, ũ = MZ1u andMZ1 = In−Z1 (Z ′1Z1)
−1 Z ′1)

and then construct a JIVE2 estimator based on the representation given in expressions (2)-(3). It

is easy to see that this estimation strategy leads equivalently to an estimator that minimizes that

objective function

Q̂IJIV E2 (δ) =
(
ỹ − x̃′δ

)′ [
P Z̃2 −D

(
P Z̃2

)] (
ỹ − x̃′δ

)
and the deviation of this IJIVE2 estimator, δ̂IJIV E2, from the true value, δ0, can be decomposed

as

δ̂IJIV E2 − δ0 =
(
x̃′
[
P Z̃2 −D

(
P Z̃2

)]
x̃
)−1 (

π′nZ̃
′
2

[
P Z̃2 −D

(
P Z̃2

)]
ε̃+ ũ′

[
P Z̃2 −D

(
P Z̃2

)]
ε̃
)

5To give perhaps a more familiar example of the concentration of measure phenomenon, we can consider a simple
case where W1, ...,Wn is a sequence of independent random variables such that supiE

[
W 2
i

]
<∞ and E [Wi] 6= 0 for

all i. In this case, it is well-known that
∑n

i=1
Wi = Op (n) whereas

∑n

i=1
(Wi − µi) = Op (

√
n), so that the order

of magnitude in probability of the uncentered sum
∑n

i=1
Wi is much larger than that of the properly centered sum∑n

i=1
(Wi − µi). In other words, the sum of an independent sequence of random variables will concentrate more

sharply in a much narrower range around its mean. It follows also that if it had been the case that E [Wi] = 0 for all
i; then, we would have

∑n

i=1
Wi = Op (

√
n), so the order of magnitude in this case is smaller than in the case where

E [Wi] 6= 0. Moreover, the concentration of measure phenomenon is known to exist more generally, not just for sums
of independent random variables but also for Lipschitz functions of such variables and for multilinear forms. See, for
example, Tao (2012) for additional discussion.
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Again, if we focus on the term ũ′
[
P Z̃2 −D

(
P Z̃2

)]
ε̃, we can show by simple manipulation that,

since P Z̃2 = Z̃2

(
Z̃ ′2Z̃2

)−1
Z̃ ′2 = MZ1Z2

(
Z ′2M

Z1Z2
)
Z ′2M

Z1 ,

ũ′
[
P Z̃2 −D

(
P Z̃2

)]
ε̃ = u′MZ1

[
MZ1Z2

(
Z ′2M

Z1Z2
)
Z ′2M

Z1 −D
(
P Z̃2

)]
MZ1ε

= u′
[
P Z̃2 −MZ1D

(
P Z̃2

)
MZ1

]
ε

By an easy calculation, one can show that E
{
u′
[
P Z̃2 −MZ1D

(
P Z̃2

)
MZ1

]
ε
}
6= 0, so this term

is not properly centered at zero, even under the usual assumption that (εi, ui) is independent of

(εj , uj) for all i 6= j, as long as there is error heteroskedasticity. Note that, the matrix P Z̃2 −
MZ1D

(
P Z̃2

)
MZ1 in the middle of the bilinear form in u and ε turns out not to have zero diagonal

elements because, in some sense, the process of partialing out Z1 has interfered with the process

of jackknife recentering in this case. Our basic point in presenting this example here is simply to

show that it is not as easy as it might seem to construct an IV estimator which simultaneously

partial out all additional covariates and at the same time preserve the recentering property of the

jackknife methodology. As we will show in the remaining sections of this paper, such estimators

can be constructed, however, even in a more general cluster-sample/panel-data setting with fixed

effects and with many stochastic instruments and included exogenous regressors.

3 Model, Assumptions, and Estimation Procedures

The more general model that we consider in this paper is a cluster-sample IV regression model

y(i,t)
1×1

= X ′(i,t)δ0 + ϕ′nZ1,(i,t) + αi + ε(i,t), (4)

X(i,t) = Φ′nZ1,(i,t) + Π′nZ2,(i,t) + ξi + U(i,t), (5)

where i = 1, ..., n, t = 1, ..., Ti, and the total sample size is given by mn =
∑n

i=1
Ti. The notation

(i, t) : N× N→ N denotes a pairing function which maps an ordered pair of natural numbers

into a natural number, so that, in particular, we have (1, 1) = 1, ..., (1, T1) = T1, (2, 1) = T1 +

1, ..., (n, Tn) = mn. This is just a notational device used to convert a double index into a single

index, thus, facilitating certain vectorization and summation operations while still allowing one

to keep track of both i and t. In this setup, we take X(i,t) to be a d × 1 vector of endogenous

regressors, and we let Z1,(i,t) denote a K1,n×1 vector of included exogenous variables and let Z2,(i,t)
denote a K2,n × 1 vector of instruments, for i = 1, 2, ..., n and t = 1, ..., Ti (or, equivalently, for
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(i, t) = 1, ...,mn). To allow for the possibility that Z1,(i,t) and Z2,(i,t) may be weakly correlated with

the endogenous variables y(i,t) and X(i,t), we let each of the coeffi cient parameters ϕn, Φn, and Υn

to possibly have a (generalized) local-to-zero structure which we will specify more precisely later in

Assumptions 3 and 4. In addition, αi and ξi in the above equations denote unobserved or individual

effects interpreted as “fixed effects”in the sense that although we do not necessarily require αi and

ξi to be (non-random) constants, they are allowed to be correlated with the exogenous variables

Z1,(i,t) and Z2,(i,t), unlike the typical assumptions specified in a traditional “random effects”model.

More precise assumptions on the model given by equations (4) and (5) are given below.

We will develop some additional notations before proceeding. First, let

Z1 =
(
Z1,(1,1), .., Z1,(1,T1), ..., Z1,(n,1), .., Z1,(n,Tn)

)′ be an mn × K1,n matrix of observations on the

include exogenous variables and let Z2 =
(
Z2,(1,1), .., Z2,(1,T1), ..., Z2,(n,1), .., Z2,(n,Tn)

)′ be an mn ×
K2,n matrix of observations on the instruments. Also, define the mn×Kn matrix Z =

[
Z1 Z2

]
,

where Kn = K1,n + K2,n. Now, let y and X be defined similar to Z1 and Z2 by stacking the

observations across the index (i, t) = 1, ...,mn; and we can write the model given by equations (4)

and (5) more succinctly as

y
mn×1

= Xδ0 + Z1ϕn +Qα+ ε, (6)

X
mn×d

= Z1Φn + Z2Πn +QΞ + U , (7)

where α = (α1, ..., αn)′, Ξ = (ξ1, ..., ξn)′, and Q
mn×n

=
(
e1,nι

′
T1

e2,nι
′
T2
· · · en,nι

′
Tn

)′
with

ej,n being an n × 1 elementary vector whose jth component is 1 and all other components are

0. Note that our setup allows the clusters to be of possibly different sizes, so that our model

can also be interpreted as a possibly unbalanced panel data model. For notational convenience,

we have suppressed the dependence of y, X, Z1, Z2, Q, ε, and U on n but have made explicit

the dependence of ϕn, Φn, and Υn on n to highlight the fact that these parameters may have a

local-to-zero structure.

Making use of these notations, we can write down the following assumptions for our model.

Assumption 1: Let FZn = σ (Z) (i.e., the σ-algebra generated by Z). Assume the following

conditions are satisfied (i) Conditional on FZn ,
(
ε(1,1), U

′
(1,1)

)
, ...,

(
ε(1,T1), U

′
(1,T1)

)
,

.....,
(
ε(n,1), U

′
(n,1)

)
, ...,

(
ε(n,Tn), U

′
(n,Tn)

)
are mutually independent. (ii) E

[
ε(i,t)|FZn

]
= 0 and

E
[
U(i,t)|FZn

]
= 0 a.s., for (i, t) = 1, ...,mn.

Assumption 2: There exists a constant C ≥ 1 such that for all n

(i) max1≤(i,t)≤mn
E
[
ε8(i,t)|F

Z
n

]
≤ C < ∞ a.s.and max1≤(i,t)≤mn

E
[∥∥U(i,t)∥∥82 |FZn ] ≤ C < ∞ a.s.
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and (ii) inf1≤(i,t)≤mn
λmin

(
Ω(i,t)

)
≥ 1/C > 0 a.s., where Ω(i,t) = E

[
ν(i,t)ν

′
(i,t)|F

Z
n

]
with ν(i,t) =(

ε(i,t) U ′(i,t)

)′
.

Assumption 3: Let Πn = ΥDµ/
√
n, where Dµ = diag

(
µ1,n, .., µd,n

)
. Also, let µminn = min1≤k≤d

µk,n and let K2,n denote the number of instruments or the number of columns of Z2. The following

conditions are assumed on the diagonal elements µ1,n, .., µd,n, as n → ∞. (i) Either µk,n =
√
n

or µk,n/
√
n → 0, for k ∈ {1, ..., d}. (ii) µminn → ∞, as n → ∞, such that

√
K2,n/

(
µminn

)2 → 0

(iii) λmin (Hn) ≥ 1/C > 0 and λmax (Υ′Z ′2Z2Υ/n) ≤ C < ∞ a.s., for all n suffi ciently large,

where Hn = Υ′Z ′2M
(Z1,Q)Z2Υ/n. Here, we take M (Z1,Q) = MQ − MQZ1

(
Z ′1M

QZ1
)−1

Z ′1M
Q

where MQ = Imn − Q (Q′Q)−1Q′, so that M (Z1,Q) is a projection matrix which projects into the

orthogonal complement of the space spanned by the columns of the matrix
[
Z1 Q

]
.

Assumption 4: Let Φn = ΘDκ/
√
n and ϕn = γτn/

√
n, where Dκ

d×d
= diag (κ1,n, .., κd,n) and τn

is a sequence of positive real numbers. The following conditions are assumed on κ1,n, .., κd,n and

on τn as n → ∞: (i) either κ`,n =
√
n or κ`,n/

√
n → 0, for ` ∈ {1, ..., d}; (ii) either τn =

√
n or

τn/
√
n→ 0.

Assumption 3 is general enough to accommodate a range of situations including both cases

where there are strong instruments and cases where the instruments are weaker. In particular,

when µ1,n = · · · = µd,n = µminn =
√
n, our model specializes to the more classical situation where

the instruments are strong. On the other hand, the cases where some of the µj,n’s (j = 1, .., d)

grow at a rate slower than
√
n correspond to cases where at least some of the components of the

parameter vector of interest δ are weakly identified. By allowing for the possibility that different

µj,n’s may grow at different rates, our setup also allows for heterogeneity in how strongly the

different components of δ are identified. Note, however, that we do require that
√
K2,n/

(
µminn

)2 →
0, since this is both a suffi cient and a necessary condition for consistent estimation of δ6.

It should be noted that an interesting paper by Antoine and Renault (2012) has also modeled

heterogeneity in instrument weakness in a way similar to Assumption 3. However, our setup here

differs from that of Antoine and Renault (2012) in several respects. First of all, Antoine and

Renault (2012) consider a GMM setup with a fixed number of moment conditions. Hence, Antoine

and Renault (2012) allow for nonlinearity in their framework but do not consider the case where

the number of instruments/moment conditions may be large, as we do here in our linear setup.

In addition, the parameter vector in the Antoine-Renault setup is of fixed dimension. In contrast,

although our parameter vector of interest δ is also of fixed dimension; our model contains a large

6The suffi ciency part of this condition has been demonstrated in various settings by Chao and Swanson (2005),
Hausman et al (2012), and Chao et al (2012); whereas the necessity part of this condition has been proved recently
by Mikusheva and Sun (2021).
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number of additional nuisance and incidental parameters, given that we allow for many included

exogenous regressors and for the presence of fixed effects. Thus, the paper by Antoine and Renault

(2012) does not consider the kind of problems associated with having to eliminate a large number

of nuisance and incidental parameters that we do here in our paper. Given these differences, we

view our analysis here as being largely complementary to that of Antoine and Renault (2012).

Assumption 4 allows for possible local-to-zero modeling of the coeffi cients of Z1 both in the

outcome (or structural) equation and in the first-stage equations. In the special case where κ1,n =

· · · = κd,n = τn =
√
n and µ1,n = · · · = µd,n = µminn =

√
n, our model becomes a standard textbook

linear IV model (or limited information simultaneous equations model) with strong instruments.

However, by allowing for the possibility that some of the κj,n’s and/or τn may grow at a rate slower

than
√
n, we also accommodate situations where the additional covariates may only be weakly

correlated with y(i,t) and/or with some elements of X(i,t).

Assumption 5: (i) mn → ∞ as n → ∞, such that mn ∼ n. (ii) K1,n,K2,n → ∞, as n → ∞,
such that K2

1,n/n = O (1) and K2
2,n/n = o (1). (iii) Let MQ = Imn −Q (Q′Q)−1Q′. There exists a

positive constant C such that λmin
(
Z ′MQZ

)
≥ C > 0 a.s., for all n suffi ciently large. (iv) Let P⊥ =

P (Z,Q)−P (Z1,Q) = M (Z1,Q)Z2
(
Z ′2M

(Z1,Q)Z2
)−1

Z ′2M
(Z1,Q) and PZ

⊥
1 = MQZ1

(
Z ′1M

QZ1
)−1

Z ′1M
Q,

whereM (Z1,Q) is as defined in part (iii) of Assumption 3 and where P (Z,Q) and P (Z1,Q) are projection

matrices that project into the column space of
[
Z Q

]
and

[
Z1 Q

]
, respectively7. Assume

that max1≤(i,t)≤mn
P
Z⊥1
(i,t),(i,t) = Oa.s. (K1,n/n) and max1≤(i,t)≤mn

P⊥(i,t),(i,t) = Oa.s. (K2,n/n)8.

Assumption 6: (i) min1≤i≤n Ti ≥ 3 for all n; (ii) There exists a positive integer T ≥ 3, such that

max1≤i≤n Ti ≤ T <∞, for all n.

Assumption 7: Assume that max1≤(i,t)≤mn

∥∥Υ′Z ′2M
(Z1,Q)e(i,t)

∥∥
2
/
√
n = op (1), where e(i,t) is

an mn × 1 elementary vector whose (i, t)th component is 1 and all components are 0 for (i, t) ∈
{1, 2, ...,mn}.

Note that Assumption 7 is similar to a condition given in Assumption 3 of Cattaneo, Jansson,

and Newey (2018). As noted in that paper, this assumption comes close to providing a minimal

condition for the central limit theorem to hold.

Assumption 8: Let ρn = E
[
U ′MQε

]
/E
[
ε′MQε

]
. Let the limit of ρn exists, so that ρn → ρ , as

7Note that P (Z,Q) and P (Z1,Q)can be given the explicit representations P (Z,Q) = PZ +MZQ
(
Q′MZQ

)−1
Q′MZ

and P (Z1,Q) = PZ1 + MZ1Q
(
Q′MZ1Q

)−1
Q′MZ1 , where PZ = Z (Z′Z)

−1
Z′, PZ1 = Z1 (Z′1Z1)

−1
Z′1, M

Z1 =

Imn − PZ1 , and MZ = Imn − PZ .
8More primitive, suffi cient conditions for max1≤(i,t)≤mn P

Z⊥1
(i,t),(i,t) = Oa.s. (K1,n/n) and max1≤(i,t)≤mn P

⊥
(i,t),(i,t) =

Oa.s. (K2,n/n) are given in Lemma OA-20 of the Additional Online Appendix, which can be found at the URL:
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_
Cluster_Sample_IV_Model_August_19_2022.pdf
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n→∞, for some fixed d× 1 vector ρ ∈ Sρ, where Sρ denotes some compact subset of Rd.

To estimate the parameter (vector) of interest δ in equation (4), we propose three new jackknife-

type IV estimators. We shall use the acronyms FEJIV, FELIM, and FEFUL to denote, respectively,

the Fixed Effect Jackknife IV, the Fixed Effect LIML, and the Fixed Effect Fuller estimator.

1. FEJIV:

δ̂J =
(
X ′AX

)−1
X ′Ay,

where A = P⊥ −M (Z,Q)D
ϑ̂
M (Z,Q), with M (Z,Q) = Imn − P (Z,Q) and with P⊥ as previously

defined in Assumption 5. In addition, D
ϑ̂
denotes anmn×mn diagonal matrix, whose diagonal

elements ϑ̂ =
(
ϑ̂1 ϑ̂2 · · · ϑ̂mn

)′
, when stacked into a vector, correspond to the solution

of the system of linear equations dP⊥ =
(
M (Z,Q) ◦M (Z,Q)

)
ϑ, where dP⊥ is an mn × 1 vector

containing the diagonal elements of the projection matrix P⊥.

2. FELIM: The FELIM estimator δ̂L is the estimator that minimizes the objective function

Q̂FELIM (δ) =
(y −Xδ)′A (y −Xδ)

(y −Xδ)′M (Z1,Q) (y −Xδ)
, (8)

where A is as defined above in the definition of FEJIV and where M (Z1,Q) is as defined in

Assumption 3. δ̂L has the explicit representation

δ̂L =
(
X ′
[
A− ̂̀LM (Z1,Q)

]
X
)−1 (

X ′
[
A− ̂̀LM (Z1,Q)

]
y
)
, (9)

where ̂̀L is the smallest root of the determinantal equation det
{
X
′
AX − `X ′M (Z1,Q)X

}
= 0 with X =

[
y X

]
.

3. FEFUL: The FEFUL estimator δ̂F is defined as follows:

δ̂F =
(
X ′
[
A− ̂̀FM (Z1,Q)

]
X
)−1 (

X ′
[
A− ̂̀FM (Z1,Q)

]
y
)
,

where ̂̀F =
[̂̀
L −

(
1− ̂̀L)C/mn

]
/
[
1−

(
1− ̂̀L)C/mn

]
for some constant C and wherềL

is as previously defined in the definition of FELIM given above. For the Monte Carlo results

reported in section 6, we shall take C = 1.

To help develop some intuition for these new estimators, it is easiest if we focus the discussion
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on FEJIV. To proceed, note first that, under our setup, it is not diffi cult to show that

δ̂J − δ0 =
(
X ′AX

)−1
X ′Aε =

(
X ′AX

)−1 (
Π′nZ

′
2Aε+ U ′Aε

)
,

where the “numerator”of the right-hand side of this equation is again written in a familiar form

as the sum of a linear form Π′nZ
′
2Aε plus a bilinear form U ′Aε. Next, note that an elementary

result from linear algebra states that if A = MDM , where A is a square matrix, D is a diagonal

matrix, and M is a symmetric matrix, then a = (M ◦M) d, where a = (a11, a22, ..., amn,mn)′ and

d = (d11, d22, ..., dmn,mn)′. Put in words, this result states that the vector of diagonal elements of A

is a linear transformation of the vector of diagonal elements of D, with the transformation matrix

given by (M ◦M). Since in the definition of δ̂J , we have specified A = P⊥ −M (Z,Q)D
ϑ̂
M (Z,Q),

it follows that by choosing the diagonal elements of D
ϑ̂
to satisfy the system of linear equations

dP⊥ =
(
M (Z,Q) ◦M (Z,Q)

)
ϑ, where dP⊥ =

(
P⊥11, P

⊥
22, ..., P

⊥
mn,mn

)′
, we would, by construction, end

up with a matrix A whose diagonal elements A11, ..., Amn,mn are all zero. This, in turn, leads

to the bilinear form U ′Aε having the characteristics of a degenerate U-statistic, with expectation

that is properly centered at zero. As discussed in the previous section, this proper centering is

important, as it reduces the order of magnitude of the bilinear term U ′Aε and, thus, allows δ̂J to

be both consistent and asymptotically normal under many weak instrument asymptotics so long as√
K2,n/

(
µminn

)2 → 0. In addition, write δ̂J − δ0 = (X ′AX)−1X ′A (Z1ϕn +Qα+ ε), and note that

X ′A (Z1ϕn +Qα+ ε) = (Z1Φn + Z2Πn +QΞ + U)′
[
P⊥ −M (Z,Q)D

ϑ̂
M (Z,Q)

]
(Z1ϕn +Qα+ ε)

= Π′nZ
′
2P
⊥ε+ U ′

[
P⊥ −M (Z,Q)D

ϑ̂
M (Z,Q)

]
ε. (10)

Looking at equation (10), we see that the design of the matrix A allows fixed effects and the included

exogenous regressors Z1 to be partialed out on both sides of A in the above expression, and this is

done in such a way so that the proper centering of the bilinear form U ′
[
P⊥ −M (Z,Q)D

ϑ̂
M (Z,Q)

]
ε

is still preserved. FELIM and FEFUL are a bit more complicated than FEJIV to discuss, but

they share the same basic design as FEJIV; and, in consequence, they will also be consistent and

asymptotically normal under many weak instrument asymptotics, as we will show in the theorems

below.

In contrast, jackknife IV estimators currently available in the literature do not fully accomplish

the dual goals of being both properly centered and of having all cluster-specific effects and additional

covariates properly partialed out. To be more specific, we will briefly discuss a number of jackknife

IV estimators that have been proposed in the literature. The paper by Angrist, Imbens, and

Krueger (1999) consider the JIVE1 and JIVE2 estimators of the parameter vector δ, but in a cross-
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sectional setup without either fixed effects or included exogenous regressors. Hence, these authors

do not explicitly study the more general version of these estimators that partials out additional

covariates. Hausman et al. (2012) introduce jackknife versions of LIML and Fuller estimators

called HLIM and HFUL, but they do so in a cross-sectional context where there are no fixed effects

and where only a small number of included exogenous regressors is allowed, so that the problem of

having to partial out fixed effects and a potentially large number of included exogenous variables

is not studied in that paper. In addition, the symmetric jackknife IV (SJIVE) estimator proposed

by Bekker and Crudu (2015) is formulated in a setting without fixed effects and with no included

exogenous regressors. Hence, that paper also does not consider issues related to having to partial

out additional covariates.

In a recent paper, Evdokimov and Kolesár (2018) examine a number of interesting jackknife IV

estimators that allow for partialing out of additional covariates. In the previous section, we have

already discussed the IJIVE2 estimator from that paper in the context of a simple cross-sectional IV

model. Here, we shall briefly examine the other estimators considered in Evdokimov and Kolesár

(2018) and provide some discussion about how these estimators might perform under many weak

instruments asymptotics when applied to our more general cluster-sample setting here with fixed

effects. For this purpose, it is easiest to consider the case where there is only one endogenous

regressor. In this case, note that Dµ = µn = µminn since d = 1, and we shall use x, πn, φn, υ, and u

in lieu of X, Πn, Φn, Υ, and U to emphasize the fact that, in the one endogenous regressor case;

x, πn, φn, and u are vectors and not matrices.

Consider first the IJIVE1 estimator studied in that paper. This estimator was originally pro-

posed by Ackerberg and Devereux (2009) and is further analyzed in the grouped data setting by

Evdokimov and Kolesár (2018)9. Using our notation, the estimator can be written in the form

δ̂IJIV E1 =

(
x′M (Z1,Q)

[
P⊥ −D

(
P⊥
)] [

Imn −D
(
P⊥
)]−1

M (Z1,Q)x

)−1
×
(
x′M (Z1,Q)

[
P⊥ −D

(
P⊥
)] [

Imn −D
(
P⊥
)]−1

M (Z1,Q)y

)
.

Now, it is easily seen that the deviation of this estimator from the true value δ0 can be written as

δ̂IJIV E1 − δ0 =
(
x′AIJ1x

)−1
x′AIJ1 (Z1ϕn +Qα+ ε)

=
(
x′AIJ1x

)−1 (
Π′nZ

′
2AIJ1ε+ U ′AIJ1ε

)
, (11)

9 It should be noted that this estimator was originally referred to in Ackerberg and Devereux (2009) as simply
IJIVE. However, since Edokimov and Kolesár (2018) introduced a variant of this estimator in their paper which they
called IJIVE2, they renamed the original IJIVE estimator IJIVE1.

14



where AIJ1 = M (Z1,Q)
[
P⊥ −D

(
P⊥
)] [

Imn −D
(
P⊥
)]−1

M (Z1,Q). Straightforward

calculations further show that the (i, t)th diagonal element of the matrix AIJ1 is given by

AIJ1,(i,t),(i,t) =

mn∑
(j,s)=1

M
(Z1,Q)
(j,s),(i,t)

1− P⊥(j,s),(j,s)

[
P⊥(i,t),(j,s) −M

(Z1,Q)
(i,t),(j,s)P

⊥
(j,s),(j,s)

]
6= 0,

for (i, t) = 1, ...,mn, so that u′AIJ1ε, the bilinear form on the right-hand side of equation (11)

above, will not be a degenerate U-statistic and will not be properly centered at the origin. Hence,

similar to what we have pointed out previously about IJIVE2, the problem here is that, although

the matrix
[
P⊥ −D

(
P⊥
)] [

Imn −D
(
P⊥
)]−1

does have a “jackknife form” in the sense that the

elements of its main diagonal are all zero, it defines a bilinear form not with respect to u and ε

but with respect to the projected vectors û = M (Z1,Q)u and ε̂ = M (Z1,Q)ε. Note, however, that

in general the (i, t)th element of û will contain not just the (i, t)th element of u but other elements

as well, and similarly for ε̂. In consequence, merely having the diagonal elements zeroed out in

this case is not suffi cient for the bilinear form u′AIJ1ε = û′
[
P⊥ −D

(
P⊥
)] [

Imn −D
(
P⊥
)]−1

ε̂ to

have expectation equal to zero. Again, we have a situation where the process of partialing out the

covariates has interfered with the process of jackknife recentering.

Another estimator studied in Evdokimov and Kolesár (2018) is the UJIVE estimator, which

was first introduced in Kolesár (2013) and then further analyzed in the grouped data setting by

Evdokimov and Kolesár (2018). This estimator takes the form

δ̂UJIV E =

(
x′
[
P̃ (Z,Q)D

(
M (Z,Q)

)−1
− P̃ (Z1,Q)D

(
M (Z1,Q)

)−1]
x

)−1
×
(
x′
[
P̃ (Z,Q)D

(
M (Z,Q)

)−1
− P̃ (Z1,Q)D

(
M (Z1,Q)

)−1]
y

)
,

where Z =
[
Z1 Z2

]
, P̃ (Z,Q) = P (Z,Q) −D

(
P (Z,Q)

)
, and P̃ (Z1,Q) = P (Z1,Q) −D

(
P (Z1,Q)

)
. Now,

the deviation of the UJIVE estimator from the true value δ0 can be written as

δ̂UJIV E − δ0 =

(
x′AUJx

µ2n

)−1(x′AUJZ1ϕn + x′AUJQα+ φ′nZ
′
1AUJε+ π′nZ

′
2AUJε+ u′AUJε

µ2n

)
=

(
x′AUJx

µ2n

)−1(x′AUJZ1ϕn + x′AUJQα+ π′nZ
′
2AUJε+ u′AUJε

µ2n

)

where AUJ =
[
P (Z,Q) −D

(
P (Z,Q)

)]
D
(
M (Z,Q)

)−1 − [P (Z1,Q) −D (P (Z1,Q))]D (M (Z1,Q)
)−1
. Note

first that the diagonal elements of the matrix AUJ are all equal to zero, so the bilinear term for

this estimator, U ′AUJε, is properly centered. However, this estimator has a bias problem that
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arises from the presence of the term x′AUJZ1ϕn/µ
2
n, which can be nonnegligible and even large

in order of magnitude. To see this, observe first that simple manipulation shows that AUJ =

M (Z1,Q)D
(
M (Z1,Q)

)−1 −M (Z,Q)D
(
M (Z,Q)

)−1
. Using this identity, we can write

x′AUJZ1ϕn
µ2n

=
π′nZ

′
2M

(Z1,Q)D
(
M (Z1,Q)

)−1
Z1ϕn

µ2n

+
u′M (Z1,Q)D

(
M (Z1,Q)

)−1
Z1ϕn

µ2n
−
u′M (Z,Q)D

(
M (Z,Q)

)−1
Z1ϕn

µ2n
. (12)

Note that the term on the right-hand side of (12) which can be particularly large in order of

magnitude is π′nZ
′
2M

(Z1,Q)D
(
M (Z1,Q)

)−1
Z1ϕn/µ

2
n. In fact, one can show that

π′nZ
′
2M

(Z1,Q)D
(
M (Z1,Q)

)−1
Z1ϕn

µ2n
=
τn
µn

υ′Z ′2M
(Z1,Q)D

(
M (Z1,Q)

)−1
Z1γ

n
= Oa.s.

(
τn
µn

)
.

Hence, this estimator will be inconsistent as long as µn = O (τn). This will certainly be true in

weak instrument cases where µn = o (τn), but can also occur even in strong instrument cases where

µn ∼
√
n if the included exogenous regressors enter significantly into the structural equation of

interest, in which case τn ∼
√
n. Our Monte Carlo results reported in section 6 also confirm that

UJIVE can have a large median bias relative to its competitors when there are included exogenous

regressors that enter significantly into the structural equation of interest10.

Since our setup essentially has a panel data structure, one may also wonder if it is possible to

simply first difference away the fixed effects and then do a jackknife-type recentering. A problem

with this strategy occurs if the IV regression contains, in addition to fixed effects, other included

exogenous regressors which cannot be eliminated by first-differencing. In that case, one will have to

do a projection to partial out these included exogenous regressors, leading to the same problem as

we have discussed previously with regard to IJIVE1 and IJIVE2. In fact, the problem will be worse

in this case due to the serial correlation in the errors induced by the first-differencing. Moreover,

even if there are no additional included exogenous regressors, the serial correlation induced by

10 It should be noted, however, that UJIVE may perform well under many weak instrument asymptotics in the
special case where the equation of interest contains no included exogenous regressors and only fixed effects. This is
not only because in this case there is no term of the form
x′AUJZ1ϕn/µ

2
n = τnx

′AUJZ1γ/
(
µ2n
√
n
)
, but also because, in this case,

π′nZ
′
2AUJQα

µ2n
=

π′nZ
′
2

[
MQD

(
MQ

)−1 −M (Z2,Q)D
(
M (Z2,Q)

)−1]
Qα

µn
√
n

= 0

so that, without the contaminating effects of the included exogenous regressors, UJIVE does properly partial out the
fixed effects. We conjecture that, in this setting, UJIVE might be consistent so long as

√
K2,n/

(
µminn

)2 → 0, but we
have yet to obtain a formal proof of this result.
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first differencing causes additional complications. In particular, let PZ = Z (Z ′Z)−1 Z ′ denote the

projection matrix of the instruments11. Then, to achieve proper jackknife recentering in this case

requires the removal not only of the elements on the main diagonal of PZ but also the elements on

the superdiagonal and the subdiagonal of PZ , so that with serial correlation proper recentering is

attained only at the cost of greater information loss. Finally, the presence of serial correlation also

makes the large sample covariance matrix of a jackknife IV estimator under many weak instrument

asymptotics both more complicated and more diffi cult to estimate. Hence, we believe that our

approach for removing fixed or cluster-specific effects has certain advantages over any alternative

procedure that is based on first-differencing. It should be noted that a recent panel data paper

by Hsiao and Zhou (2018) does take the approach of constructing a jackknife IV estimator after

first-differencing the data. However, the objective and focus of that paper differs greatly from ours.

First of all, the panel data simultaneous equations model specified in Hsiao and Zhou (2018) does

not allow for the degree of instrument weakness that we consider. In addition, the model that they

consider does not have error heteroskedasticity or included exogenous regressors. If we apply their

estimator to our setting, the estimator will not be consistent in the case where K2,n ∼
(
µminn

)2 or
in the case where K2,n/

(
µminn

)2 → ∞, but √K2,n/
(
µminn

)2 → 0. Still, it should be stressed that

in their setting with strong instruments and error homoskedasticity their estimator does have good

asymptotic properties.

Turning our attention back to the equation dP⊥ =
(
M (Z,Q) ◦M (Z,Q)

)
ϑ, note that in order for

this system of linear equations to have a unique solution, we need the matrix
(
M (Z,Q) ◦M (Z,Q)

)
to

be invertible. The following lemma provides suffi cient conditions for the invertibility of
(
M (Z,Q) ◦M (Z,Q)

)
.

Lemma 1: Suppose that Assumptions 5 and 6(i) are satisfied. Then, there exists a positive

constant C such that λmin
(
M (Z,Q) ◦M (Z,Q)

)
≥ C > 0 a.s., for all n suffi ciently large12.

It should be noted that a more general result on conditions for the invertibility of Hadamard

products has been given previously in Cattaneo, Jansson, and Newey (2018)13. However, we choose

to present a specialization of their result because it shows that, in the context of our cluster-sampling

setup, a key condition for ensuring the invertibility of
(
M (Z,Q) ◦M (Z,Q)

)
is min1≤i≤n Ti ≥ 3, which

we explicitly assume in Assumption 6 part (i) above.

A further observation is that, in analyzing estimators that are obtained from minimizing a

11Here, we let Z denote the matrix of observations on the instruments because we are referring to a case where
there are no included exogenous variables, Z1.
12A proof of Lemma 1 is given in section 2 of the Additional Online Appendix for this paper. This online appendix

can be viewed at the URL:
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_
Cluster_Sample_IV_Model_August_19_2022.pdf
13See, in particular, the analysis given in Section 3 of their Supplemental Appendix.
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variance ratio (e.g., FELIM), it is often convenient to first consider the objective function in the form

Q (β) =
(
β′X

′
AXβ

)
/
(
β′X

′
M (Z1,Q)Xβ

)
, where X = [y,X] and where β is a (d+ 1) × 1 vector,

not initially normalized to identify the dependent variable from the regressors. In this setting,

one would first minimize the objective function Q (β) to obtain a minimizer β̃ =
(
β̃1 β̃

′
2

)′
,

with β̃1 being a scalar and β̃2 a d × 1 vector and subsequently normalize the last d components

of β̃ to obtain an estimator δ̃ = −β̃2/β̃1 for the coeffi cients of the endogenous regressors X. The
following assumption ensures that this subsequent normalization is well-defined. Moreover, in the

proof of Lemma S2-11 given in the Additional Online Appendix to this paper, we show that, by

following this procedure, we end up with exactly the FELIM estimator δ̂L, that satisfies the first-

order conditions of the objective function given by (8) and that also has explicit representation

given by equation (9) above14.

Assumption 9: Consider the variance-ratio objective function

Q (β) =
(
β′X

′
AXβ

)
/
(
β′X

′
M (Z1,Q)Xβ

)
, where β ∈ B =

{
β ∈ Rd+1 : ‖β‖2 = 1

}
. Let β̃ be

a (d+ 1) × 1 vector that minimizes the objective function Q (β) , among all β ∈ B (i.e., β̃ =

arg minβ∈B Q (β)). Partition β̃ =
(
β̃1, β̃

′
2

)′
as defined above and assume that there exists a positive

constant C such that ∣∣∣β̃1∣∣∣ ≥ C > 0 a.s. for all n suffi ciently large. (13)

Note that constraining β (so that ‖β‖2 = 1) is not restrictive since we are dealing with an objective

function Q (β) that is a ratio of quadratic forms in β. More precisely, let β = arg minβ∈Rd+1 Q (β),

where β 6= 0, and let β̃ = β/
∥∥β∥∥

2
so that

∥∥∥β̃∥∥∥
2

= 1. Then, Q
(
β
)

=
(
β
′
X
′
AXβ

)
/
(
β
′
X
′
M (Z1,Q)Xβ

)
=
(∥∥β∥∥−1

2
β
′
X
′
AXβ

∥∥β∥∥−1
2

)
/
(∥∥β∥∥−1

2
β
′
X
′
M (Z1,Q)Xβ

∥∥β∥∥−1
2

)
= Q

(
β̃
)
, so any minimal value of

Q (β) obtained by minimizing β over all β ∈ Rd+1 can also be achieved by some β̃ such that∥∥∥β̃∥∥∥
2

= 1.

4 Consistency and Asymptotic Normality

of Point Estimators

Theorem 1: Let δn =
(
X ′
[
A− `nM (Z1,Q)

]
X
)−1 (

X ′
[
A− `nM (Z1,Q)

]
y
)
, for some sequence `n,

such that `n = op

([
µminn

]2
/n
)

= op (1). Then, under Assumptions 1-6,
∥∥Dµ

(
δn − δ0

)
/µminn

∥∥
2

p→ 0

and
∥∥δn − δ0∥∥2 p→ 0, as n→∞

14The proof of Lemma S2-11 is given in section 1 of the Additional Online Appendix, which, in turn, can be found
at the URL:
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_
Cluster_Sample_IV_Model_August_19_2022.pdf
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Special cases of the class of estimators that satisfy the conditions of Theorem 1, and are

thus consistent in the sense described in the theorem, include FEJIV δ̂J,n, FELIM δ̂L,n, and

FEFUL δ̂F,n. Evidently, the main difference between these estimators is the different specifi-

cations of `n. δ̂J,n takes `n = 0, for all n; δ̂L,n takes `n = ̂̀
L,n, where ̂̀L,n is the smallest

root of the determinantal equation det
{
X
′
AX − `X ′M (Z1,Q)X

}
= 0; and δ̂F,n takes `n = ̂̀

F,n

=
[̂̀
L −

(
1− ̂̀L)C/mn

]
/
[
1−

(
1− ̂̀L)C/mn

]
, as described earlier. Hence, by verifying that, in

all three cases, `n satisfies the condition `n = op

([
µminn

]2
/n
)

= op (1), we can easily specialize the

consistency result of Theorem 1 to establish the consistency of FEJIV, FELIM, and FEFUL. These

results are given in the following corollary.

Corollary 1: Under Assumptions 1-6 and 9, the following results hold as n→∞.
(a)

∥∥∥Dµ

(
δ̂J,n − δ0

)
/µminn

∥∥∥
2

p→ 0 and
∥∥∥δ̂J,n − δ0∥∥∥

2

p→ 0. (b)
∥∥∥Dµ

(
δ̂L,n − δ0

)
/µminn

∥∥∥
2

p→ 0 and∥∥∥δ̂L,n − δ0∥∥∥
2

p→ 0. (c)
∥∥∥Dµ

(
δ̂F,n − δ0

)
/µminn

∥∥∥
2

p→ 0 and
∥∥∥δ̂F,n − δ0∥∥∥

2

p→ 0.

The next two results establish asymptotic normality for the FELIM and FEFUL estimators,

under two different cases: (i) Case I: K2,n/
(
µminn

)2
= O (1) and (ii) Case II: K2,n/

(
µminn

)2 → ∞,
but

√
K2,n/

(
µminn

)2 → 0. The FEJIV estimator can also be shown to have an asymptotic normal

distribution under both Cases I and II. However, we choose to focus our theoretical analysis on

FELIM and FEFUL because, as noted previously, the results of our Monte Carlo study indicate

that FELIM and FEFUL have better finite sample properties than FEJIV.

To facilitate the statement of the next two results, define

ΛI,n = H−1n (Σ1,n + Σ2,n)H−1n = H−1n ΣnH
−1
n , (14)

ΛII,n =

(
µminn

)2
K2,n

H−1n Σ2,nH
−1
n , (15)

where Hn = Υ′Z ′2M
(Z1,Q)Z2Υ/n, Σ1,n = V C

(
Υ′Z ′2M

(Z1,Q)ε/
√
n|FZn

)
= Υ′Z ′2M

(Z1,Q)Dσ2M
(Z1,Q)Z2Υ/n, and Σ2,n = D−1µ Σ∗2,nD

−1
µ , with

Σ∗2,n = V C
(
U ′Aε|FZn

)
=

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)E
[
ε2(i,t)|F

Z
n

]
E
[
U (j,s)U

′
(j,s)|F

Z
n

]

+

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)E
[
U (i,t)ε(i,t)|FZn

]
E
[
ε(j,s)U

′
(j,s)|F

Z
n

]
. (16)
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In addition, Σn = Σ1,n + Σ2,n and U (i,t) = U(i,t) − ρε(i,t) for (i, t) = 1, ...,mn. Here, for any

random vector x, V C
(
x|FZn

)
denotes the conditional variance-covariance matrix of x given FZn .

Moreover, let Dσ2 = diag
(
σ2(1,1), ...., σ

2
(n,Tn)

)
= diag

(
σ21, ...., σ

2
mn

)
, where σ2(i,t) =

[
ε2(i,t)|F

Z
n

]
, for

(i, t) = 1, ...,mn and where, for notational convenience, we suppress the dependence of σ2(i,t) on F
Z
n .

As evident from the results given below, ΛI,n and ΛII,n are the (conditional) covariance matrices

of FELIM (and also of FEFUL) in large samples under Cases I and II, respectively.

Theorem 2: Let Assumptions 1-9 be satisfied. Then, under Case I where K2,n/
(
µminn

)2
= O (1),

the following results hold: ΛI,n is positive definite a.s. for all n suffi ciently large; and, as n → ∞,
Λ
−1/2
I,n Dµ

(
δ̂L,n − δ0

)
d→ N (0, Id) and Λ

−1/2
I,n Dµ

(
δ̂F,n − δ0

)
d→ N (0, Id).

Theorem 3: Let Assumptions 1-9 be satisfied, let L̃n be a q × d matrix with 1 ≤ q ≤ d, and let

there exists a positive constant C such that
∥∥∥L̃n∥∥∥

2
≤ C < ∞ and λmin

(
L̃nΛII,nL̃

′
n

)
≥ 1/C > 0

a.s.n. Then, under Case II where
(
µminn

)2
/K2,n = o (1) , but

√
K2,n/

(
µminn

)2 → 0, the follow-

ing results hold: as n → ∞,
(
µminn /

√
K2,n

) (
L̃nΛII,nL̃

′
n

)−1/2
L̃nDµ

(
δ̂L,n − δ0

)
d→ N (0, Iq) and(

µminn /
√
K2,n

) (
L̃nΛII,nL̃

′
n

)−1/2
L̃nDµ

(
δ̂F,n − δ0

)
d→ N (0, Iq).

5 Covariance Matrix Estimation and Hypothesis

Testing

To consistently estimate the asymptotic covariance matrix of FELIM and FEFUL, we propose

the following estimators

V̂L = Ĥ−1L Σ̂LĤ
−1
L and V̂F = Ĥ−1F Σ̂F Ĥ

−1
F , (17)

where

ĤL = X ′
[
A− ̂̀L,nM (Z1,Q)

]
X, ĤF = X ′

[
A− ̂̀F,nM (Z1,Q)

]
X

Σ̂L = X ′AD (J [̂εL ◦ ε̂L])AX − ρ̂L (ε̂L ◦ ε̂L)′ J (A ◦A) J
(
ε̂Lι
′
d ◦M (Z,Q)X

)
−
(
ε̂Lι
′
d ◦M (Z,Q)X

)′
J (A ◦A) J (ε̂L ◦ ε̂L) ρ̂′L + ρ̂Lρ̂

′
L (ε̂L ◦ ε̂L)′ J (A ◦A) J (ε̂L ◦ ε̂L)

+
(
ε̂Lι
′
d ◦ ÛL

)′
J (A ◦A) J

(
ε̂Lι
′
d ◦ ÛL

)
,

Σ̂F = X ′AD (J [̂εF ◦ ε̂F ])AX − ρ̂F (ε̂F ◦ ε̂F )′ J (A ◦A) J
(
ε̂F ι
′
d ◦M (Z,Q)X

)
−
(
ε̂F ι
′
d ◦M (Z,Q)X

)′
J (A ◦A) J (ε̂F ◦ ε̂F ) ρ̂′F + ρ̂F ρ̂

′
F (ε̂F ◦ ε̂F )′ J (A ◦A) J (ε̂F ◦ ε̂F )

+
(
ε̂F ι
′
d ◦ ÛF

)′
J (A ◦A) J

(
ε̂F ι
′
d ◦ ÛF

)
.
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and where J =
[
MQ ◦MQ

]−1
, ε̂L = M (Z,Q)

(
y −Xδ̂L

)
, ε̂F = M (Z,Q)

(
y −Xδ̂F

)
,

ÛL = M (Z,Q)X − ε̂Lρ̂′L, and ÛF = M (Z,Q)X − ε̂F ρ̂′F . In addition, let

ρ̂L =
[
X ′M (Z,Q)

(
y −Xδ̂L

)]
/

[(
y −Xδ̂L

)′
M (Z,Q)

(
y −Xδ̂L

)]
and

ρ̂F =
[
X ′M (Z,Q)

(
y −Xδ̂F

)]
/
(
y −Xδ̂F

)′
M (Z,Q)

(
y −Xδ̂F

)
denote estimators of the parameter

ρ = limn→∞E
[
U ′MQε

]
/E
[
ε′MQε

]
, based on δ̂L and δ̂F , respectively.

Our next result shows the consistency of the covariance matrix estimators given in equation

(17) under both Cases I and II15.

Theorem 4: If Assumptions 1-6 and 8-9 are satisfied; then, the following statements are true:

(a) For Case I, whereK2,n/
(
µminn

)2
= O (1), DµV̂LDµ = ΛI,n+op (1) andDµV̂FDµ = ΛI,n+op (1),

where ΛI,n is as defined in equation (14).

(b) For Case II, where K2,n/
(
µminn

)2 →∞ but
√
K2,n/

(
µminn

)2 → 0,
[(
µminn

)2
/K2,n

]
DµV̂LDµ =

ΛII,n + op (1) and
[(
µminn

)2
/K2,n

]
DµV̂FDµ = ΛII,n + op (1), where ΛII,n is as defined in

equation (15).

Theorem 5 below provides results on the asymptotic properties of t-statistics associated with the

FELIM and FEFUL estimators when testing a general linear hypothesis of the form H0 : c′δ0 = r.

We show that the t-ratio based on our estimators has an asymptotic standard normal distribution

under the null hypothesis, as long as
√
K2,n/

(
µminn

)2 → 0. Moreover, our results show that, under

the same rate condition, the tests are also consistent, as our test statistics diverge with probability

approaching one under fixed alternatives. Some additional conditions are needed to obtain these

results if we were to allow for general heterogeneity in instrument weakness where the diagonal

elements µg,n (g = 1, .., d) of Dµ can diverge at different rates. These conditions are given in

Assumption 10.

Assumption 10: Consider testing the null hypothesis H0 : c′δ0 = r. Let

µ∗n (c) = min
{
µg,n|g ∈ {1, ..., d} , cg 6= 0

}
15 It can be shown that an estimator of the asymptotic covariance matrix of FEJIV, which will be consistent under

both Case I and II, is given by

V̂J,n = Ĥ−1Σ̂JĤ
−1 =

(
X ′AX

)−1 [
X ′ADς̂JAX +

(
ε̂J ◦ Û

)′
J (A ◦A) J

(
ε̂J ◦ Û

)] (
X ′AX

)−1
,

where Dς̂J = diag
(
ς̂J,(1,1), .., ς̂J,(1,T1), .., ς̂J,(n,1), .., ς̂J,(n,Tn)

)
, ς̂J,(i,t) = e′(i,t)J (ε̂J ◦ ε̂J), ε̂J = M (Z,Q)

(
y −Xδ̂J

)
, and

Û = M (Z,Q)X. Note also that the standard error used for FEJIV in our Monte Carlo study given in section 6 is
based on the above formula.
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where cg is the gth component of the vector c, and let µ∗n (c)D−1µ c → c∗ 6= 0 as n → ∞. Assume
that c′∗ΛII,nc∗ ≥ C a.s. for all n suffi ciently large for some positive constant C.

Theorem 5: If Assumptions 1-10 are satisfied; then, the following statements are true for the

t-statistics TL =
(
c′δ̂L − r

)
/

√
c′V̂Lc and TF =

(
c′δ̂F − r

)
/

√
c′V̂F c.

a. For Case I, where K2,n/
(
µminn

)2
= O (1):

(i) Under H0 : c′δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1) .

(ii) Under H1 : c′δ0 6= r, with probability approaching one, as n→∞, the following results
hold: TL → +∞ if c′δ0 > r; TL → −∞ if c′δ0 < r; TF → +∞ if c′δ0 > r; and

TF → −∞ if c′δ0 < r.

b. For Case II, where K2,n/
(
µminn

)2 →∞ but
√
K2,n/

(
µminn

)2 → 0:

(i) Under H0 : c′δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1) .

(ii) Under H1 : c′δ0 6= r, with probability approaching one, as n→∞, the following results
hold: TL → +∞ if c′δ0 > r; TL → −∞ if c′δ0 < r; TF → +∞ if c′δ0 > r; and

TF → −∞ if c′δ0 < r.

.

In looking over the proof of Theorem 5, one can see that the condition stipulating c′∗ΛII,nc∗ ≥
C a.s.n. for some constant C > 0, given in Assumption 10, is only needed in Case II where

K2,n/
(
µminn

)2 → ∞ but
√
K2,n/

(
µminn

)2 → 0. This is because in this case the covariance matrix

estimator is dominated by the contribution of the bilinear term and, when appropriately normalized,

this matrix takes the form

ΛII,n

=

(
µminn

)2
K2,n

Dµ

(
Π′nZ

′
2M

(Z1,Q)Z2Πn

)−1
Σ∗2,n

(
Π′nZ

′
2M

(Z1,Q)Z2Πn

)−1
Dµ

=

(
µminn

)2
K2,n

(
D−1µ

DµΥ′Z ′2M
(Z1,Q)Z2ΥDµ

n
D−1µ

)−1
D−1µ Σ∗2,nD

−1
µ

×
(
D−1µ

DµΥ′Z ′2M
(Z1,Q)Z2ΥDµ

n
D−1µ

)−1

= H−1n

[(
µminn

)2
K2,n

D−1µ Σ∗2,nD
−1
µ

]
H−1n (18)
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where Hn = Υ′Z ′2M
(Z1,Q)Z2Υ/n and Σ∗2,n is as defined in expression (16) above. Now, the ma-

trix ΛII is singular in large sample when heterogeneity in instrument weakness of a general form

is allowed because, even though K−12,nΣ∗2,n can be shown to be positive definite almost surely as

K2,n, n → ∞16; the matrix
(
µminn

)
D−1µ converges to a singular diagonal matrix where some of

the diagonal elements are zero, except in the special case where Dµ =
(
µminn

)
· Id. It follows

that the matrix
[(
µminn

)2
/K2,n

]
D−1µ Σ∗2,nD

−1
µ in expression (18) will in general be a singular ma-

trix asymptotically. By following through the derivation given in expression (18), we see that

this problem occurs because, under Case II, the covariance matrix has a “denominator" term,

i.e., DµΥ′Z ′2M
(Z1,Q)Z2ΥDµ/n, which depends on Dµ but the “numerator" term Σ∗2,n does not.

Due to this asymmetry, in trying to properly standardize DµΥ′Z ′2M
(Z1,Q)Z2ΥDµ/n so that its

inverse will exist asymptotically, we end up, in some sense, transferring the singularity to the

“numerator". This also explains why this same problem does not arise under Case I, where

K2,n/
(
µminn

)2
= O (1), since in that case the covariance matrix is dominated in the “numerator"

by DµΥ′Z ′2M
(Z1,Q)Dσ2M

(Z1,Q)Z2ΥDµ/n, the contribution of the linear term, which is affected by

heterogeneity in instrument weakness in the same way as the “denominator", so that, upon proper

normalization, the ill effect of this heterogeneity is removed via cancellation.

It should be pointed out that there are important special cases of interest where Assumption

10 either holds automatically or can be shown to hold under mild additional conditions. One such

special case is where instrument weakness is homogeneous, i.e., the case where µ1,n = · · · = µd,n =

µminn . In this case, the asymptotic singularity of ΛII,n does not arise, so that Assumption 10 is

fulfilled without additional side conditions, allowing us to easily obtain the following corollary to

Theorem 5.

Corollary 2: Let Assumptions 1-9 be satisfied. Assume further that the diagonal matrix Dµ in

Assumption 3 takes the form Dµ = µminn · Id (i.e., µ1,n = · · · = µd,n = µminn ). Then, the following

statements are true for the t-statistics TL =
(
c′δ̂L − r

)
/

√
c′V̂Lc and TF =

(
c′δ̂F − r

)
/

√
c′V̂F c.

a. For Case I, where K2,n/
(
µminn

)2
= O (1):

(i) Under H0 : c′δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1) .

(ii) Under H1 : c′δ0 6= r, with probability approaching one as n → ∞, the following results
hold: TL → +∞ if c′δ0 > r; TL → −∞ if c′δ0 < r; TF → +∞ if c′δ0 > r; and

TF → −∞ if c′δ0 < r.
16A proof of the asymptotically positive definiteness of K−12,nΣ∗2,n is given in Lemma S2-3 part (b) of the Additional

Online Appendix to this paper, which can be found at the URL:
http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_Jackknife_Estimation_
Cluster_Sample_IV_Model_August_19_2022.pdf
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b. For Case II, where K2,n/
(
µminn

)2 →∞ but
√
K2,n/

(
µminn

)2 → 0:

(i) Under H0 : c′δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1) .

(ii) Under H1 : c′δ0 6= r, with probability approaching one as n → ∞, the following results
hold: TL → +∞ if c′δ0 > r; TL → −∞ if c′δ0 < r; TF → +∞ if c′δ0 > r; and

TF → −∞ if c′δ0 < r.

Corollary 2 is of interest because the case where the degree of instrument weakness is homo-

geneous and does not vary across the different first-stage equations is one which is often assumed

in previous papers on weak and/or many instruments. This includes the well-known papers by

Bekker (1994), Staiger and Stock (1997) and Kleibergen (2002). In addition, note that the case

where there is only one endogenous regressor is also obviously a special case of the setup considered

in Corollary 2.

Another special case of interest is where we test a null hypothesis involving only one coeffi cient,

such as testing the significance of a particular parameter. This case is important because it is the

most frequent use of the t-statistic by empirical researchers. In this case, we show in the corollary

below that, under mild additional conditions, the t-test based on our proposed estimators will be

robust to many weak instruments, even if there is heterogeneity in instrument weakness of a general

form.

Assumption 10*: Let e` denote a d×1 elementary vector whose `th component is 1 and all other

components are 0, and write Dµ in the form

Dµ =

 D1
d1×d1

0

0
(
µminn

)
· Id2

 , (19)

where D1 = diag
(
µ1,n, .., µd1,n

)
, where d1 and d2 are positive integers such that d1 + d2 = d,

and where
(
µminn

)
/µg,n → 0, as n → ∞, for g ∈ {1, ..., d1}. Partition H−1n as H−1n = Hn =(

H
′
1· H

′
2·

)′
, where H1· is d1× d and H2· is d2× d. Assume that there exists a positive constant

C∗ such that e′`H
′
2·H2·e` ≥ C∗ > 0 a.s.for all n suffi ciently large.

Corollary 3: Let Assumptions 1-9 and 10* be satisfied; and let e` be as defined in Assumption

10* above. Consider testing the null hypothesis H0 : e′`δ0 = r, using either the t-statistic, TL =(
e′`δ̂L − r

)
/
√
e′`V̂Le` or the t-statistic, TF =

(
e′`δ̂F − r

)
/
√
e′`V̂F e`.

a. For Case I, where K2,n/
(
µminn

)2
= O (1), the following results hold for ` ∈ {1, ..., d}.
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(i) Under H0 : e′`δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1).

(ii) Under H1 : e′`δ0 6= r, with probability approaching one as n→∞, the following results
hold: TL → +∞ if e′`δ0 > r; TL → −∞ if e′`δ0 < r; TF → +∞ if e′`δ0 > r; and

TF → −∞ if e′`δ0 < r.

b. For Case II, where K2,n/
(
µminn

)2 → ∞ but
√
K2,n/

(
µminn

)2 → 0, the following results hold,

for ` ∈ {1, ..., d}.

(i) Under H0 : e′`δ0 = r, TL
d→ N (0, 1) and TF

d→ N (0, 1).

(ii) Under H1 : e′`δ0 6= r, with probability approaching one as n→∞, the following results
hold: TL → +∞ if e′`δ0 > r; TL → −∞ if e′`δ0 < r; TF → +∞ if e′`δ0 > r; and

TF → −∞ if e′`δ0 < r.

Note that writing Dµ in the way specified in equation (19) does not really lead to any loss of

generality. In fact, a seemingly more general Dµ matrix, where not all of the diagonal elements

grow at the same rate, as n→∞, can always be rewritten in the form given in equation (19), via

repermutation of the rows and columns of Dµ. To see this, suppose that µ1n, .., µd1,n, µ
min
n are not

ordered as in equation (19), so that we have some diagonal matrix D∗µ, whose diagonal elements

are µ1n, .., µd1,n, µ
min
n , but in some other order. Then, there exists some permutation matrix P

such that Dµ = PD∗µP
′, where Dµ is the diagonal matrix given in equation (19). Moreover, let

the elements of δ̂
∗
, δ∗0, c

∗, and V̂ ∗ be ordered in a way that is conformable with D∗µ, and let δ̂, δ0,

c, and V̂ be the corresponding vectors and matrix but with elements ordered conformably with

Dµ. Then, it is easy to see that δ̂ = P δ̂
∗
, δ0 = Pδ∗0, c = Pc∗, V̂ = PV̂ ∗P ′. Hence, by making

use of these relations and of the fact that P is an orthogonal matrix, we further obtain that

T∗L = c∗′
(
δ̂
∗ − δ∗0

)
/
√
c∗′V̂ ∗c∗ = c∗′P ′P

(
δ̂
∗ − δ∗0

)
/
√
c∗′P ′PV̂ ∗P ′Pc∗ = c′

(
δ̂ − δ0

)
/
√
c′V̂ c = TL.

It follows that the value of the t-statistic is invariant to repermutation of the order of the elements

of δ̂, δ0, c, and V̂ , so that the asymptotic distribution which we derive for TL, under an assumed
ordering of the elements of δ̂, δ0, c, and V̂ that is conformable with equation (19) will still apply,

even if the t-statistic computed by the empirical researcher is based on some other ordering.

Given that the representation of Dµ given in equation (19) does not result in any loss of

generality, the only real restriction imposed by Assumption 10* is the condition that e′`H
′
2·H2·e` ≥

C∗ > 0 a.s.n. for some positive constant C∗. We show in the proof of Corollary 3 that this latter

condition implies the more general conditions given in Assumption 10 if the null hypothesis we are

testing involves only one coeffi cient. It follows that hypotheses involving only one coeffi cient can

be tested under very general assumptions about the heterogeneity of instrument weakness since the
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violation of the condition e′`H
′
2·H2·e` ≥ C∗ > 0 a.s.n will only occur if the `th column of H2· does

not have a single nonzero entry, which seems unlikely in most practical applications.

To date, papers in the weak instrument literature have focused primarily on size control, with

little attention paid to test consistency under weak identification. One exception is a recent paper

by Mikusheva and Sun (2021), which shows that a condition similar to
√
K2,n/

(
µminn

)2 → 0 is both

necessary and suffi cient for the existence of a consistent test. Interpreted in light of their result,

the results presented in Theorems 5 as well as Corollaries 2 and 3 above prove that t-tests based on

FELIM and FEFUL are consistent as long as instruments are strong enough so that consistency in

hypothesis testing is possible. In contrast, t-tests based on estimators such as the 2SLS estimator

will only be consistent if K2,n/
(
µminn

)2 → 0 (i.e., under stronger instruments). Test statistics

based on LIML also have undesirable properties under many weak instrument asymptotics, when

there is error heteroskedasticity. In addition, note that one advantage of t-tests is that they are

particularly easy to apply if one is interested in testing against one-sided alternatives. The results

of Theorems 5 as well as Corollaries 2 and 3 show that, when the null hypothesis is incorrect, t-

tests based on FELIM and FEFUL diverge in the direction of the true alternative, with probability

approaching one, even in situations where identification is weaker than that typically assumed

under standard large sample theory, provided of course that
√
K2,n/

(
µminn

)2 → 0. Hence, the test

statistics proposed in this paper should be particularly useful to empirical researchers interested in

testing whether an effect in a particular direction is statistically significant.

6 Monte Carlo Results

In this section, we report some Monte Carlo results based on the following data generating process:

y(i,t) = δ
1×1

x(i,t)
1×1

+ ϕ′
1×10

Z1,(i,t)
10×1

+ αi + ε(i,t),

x(i,t) = Φ′
1×10

Z1,(i,t)
10×1

+ Π
1×K2

Z2,(i,t)
K2×1

+ ξi + u(i,t).

where we specify ϕ = ι10, Φ = ι10, and Π = (ιK2 ⊗ π) with ι10 and ιK2 being, respectively, a 10× 1

and a K2×1 vector of ones. Here, π is taken to be a scalar parameter, and we choose π so that the

concentration parameter µ2 = 25, 35, 45, and 55. Moreover, in our experiments, we consider two

choices of K2: K2 = 10, 30. Additionally, we set n = 200 and Ti = 3, for each i ∈ {1, 2, ..., 200}, so
thatmn = 600. The (i, t)th observation of the vector of included exogenous regressors, or covariates,

is taken to be Z1,(i,t) =
(
z1,(i,t) z21,(i,t) z31,(i,t) z41,(i,t) z1,(i,t)D(i,t),1 · · · z1,(i,t)D(i,t),6

)′
, where

26



{
z1,(i,t)

}600
(i,t)=1

≡ i.i.d.N (0, 1) and where D(i,t),k ∈ {0, 1} for k ∈ {1, 2, .., 6} is a binary variable such
that Pr

(
D(i,t),k = 1

)
= 1/2, with

{
D(i,t),k

}
specified to be independent across both (i, t) and k. We

also take
{
Z2,(i,t)

}600
(i,t)=1

≡ i.i.d.N (0, IK2),
{
u(i,t)

}600
(i,t)=1

≡ i.i.d.N (0, 1), {αi}200i=1 i.i.d.N (0, 1), and

{ξi}200i=1 i.i.d.N (0, 1); with z1,(i,t), D(i,t),k, Z2,(i,t), u(i,t), αi and ξi all specified to be independent of

each other. We allow the structural disturbance, ε(i,t), to exhibit conditional heteroskedasticity in

a manner similar to the design given in Hausman et al. (2012). In particular, we let

ε(i,t) = ρu(i,t) +

√
1− ρ2

φ2 + (0.86)2
(
φv1,(i,t) + 0.86v2,(i,t)

)
, (20)

where v1,(i,t)|Z1,(i,t), Z2,(i,t) ∼ N
(

0, κ
[
1 +

(
ι′10Z1,(i,t) + ι′K2

Z2,(i,t)
)2]) and v2,(i,t) ∼ N (0, 1). Both

of these distributions are specified to be independent across the index (i, t), and κ is a normalization

constant chosen so that the unconditional variance, V ar
(
v1,(i,t)

)
, is equal to 1. For all experiments

reported below, we set ρ = 0.3 and choose the parameter φ, so that the R-squared for the regression

of ε2 on the instruments and the included exogenous variables take the values 0, 0.1, and 0.2.

Our simulation study examines the finite sample properties of our three estimators (FEJIV,

FELIM, and FEFUL) and their associated t-statistics. Additionally, we compare the performance

of our estimators with the 2SLS estimator, the IJIVE1 estimator originally proposed in Ackerberg

and Devereux (2009), the IJIVE2 estimator introduced in Evdokimov and Kolesár (2018), and

the UJIVE estimator originally proposed in Kolesár (2013) and further studied in Evdokimov and

Kolesár (2018). The comparison of these point estimators is made on the basis of median bias and

nine decile range. We also evaluate the associated t-statistics for these estimators on the basis of

size control, as measured by their rejection frequencies under the null hypothesis H0 : δ = 0.

The results of our Monte Carlo study are reported in Tables 1-6 below.
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Table 1: Median Bias, K2 = 10

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1092 0.0440 0.0441 0.3811 -0.0058 0.0042 0.0161

25 0.1 0.1080 0.0429 0.0427 0.3719 -0.0071 0.0052 0.0167

0.2 0.1125 0.0475 0.0480 0.3982 -0.0053 0.0051 0.0170

0 0.0857 0.0290 0.0290 0.2562 -0.0167 -0.0003 0.0090

35 0.1 0.0860 0.0300 0.0301 0.2617 -0.0127 0.0018 0.0107

0.2 0.0879 0.0328 0.0327 0.2486 -0.0105 -0.0002 0.0083

0 0.0733 0.0263 0.0263 0.1943 -0.0095 0.0009 0.0079

45 0.1 0.0738 0.0280 0.0281 0.1984 -0.0072 0.0025 0.0094

0.2 0.0690 0.0213 0.0216 0.1908 -0.0130 -0.0007 0.0057

0 0.0629 0.0210 0.0212 0.1586 -0.0074 0.0009 0.0068

55 0.1 0.0627 0.0205 0.0206 0.1415 -0.0084 0.0017 0.0071

0.2 0.0583 0.0167 0.0165 0.1429 -0.0136 -0.0041 0.0017
Results based on 10,000 simulations

Table 2: Nine Decile Range 0.05 to 0.9517, K2 = 10

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.6638 1.0286 1.0247 5.9842 1.5849 1.2900 1.1543

25 0.1 0.6590 1.0475 1.0468 6.0422 1.6538 1.2810 1.1442

0.2 0.6491 1.0235 1.0253 6.1624 1.6218 1.2788 1.1216

0 0.5936 0.8214 0.8200 5.6334 1.0861 0.9554 0.8921

35 0.1 0.5952 0.8286 0.8288 5.8319 1.1026 0.9430 0.8876

0.2 0.5755 0.7955 0.7939 5.7128 1.0402 0.9068 0.8561

0 0.5362 0.6960 0.6960 5.1587 0.8458 0.7769 0.7433

45 0.1 0.5332 0.6876 0.6883 5.2225 0.8378 0.7665 0.7392

0.2 0.5244 0.6751 0.6753 5.2851 0.8210 0.7542 0.7229

0 0.4929 0.6109 0.6114 4.8115 0.7132 0.6620 0.6418

55 0.1 0.4929 0.6068 0.6069 4.7546 0.7076 0.6564 0.6387

0.2 0.4857 0.6039 0.6029 4.8027 0,6972 0.6465 0.6279
Results based on 10,000 simulations

17By nine decile range we mean the range between the 0.05 and the 0.95 quantiles. It should also be noted that the
reason we compare the estimators based on median bias and nine decile range instead of the usual criteria of (mean)
bias and variance is because it is well-known that the exact finite sample (mean) bias and variance of LIML-type
estimators do not exist under the assumption that errors are normally distributed. However, it is also well-known
that LIML-type estimators tend to be better centered than the 2SLS estimator in terms of median bias and, in many
ways, have better finite sample properties, in spite of the fact that they have fatter tails. Hence, the use of median
bias and nine decile range allow us to conduct a broader based Monte Carlo comparison without restricting ourselves
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Table 3: 0.05 Rejection Frequencies18, K2 = 10

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1784 0.0951 0.0884 0.5215 0.0253 0.0518 0.0535

25 0.1 0.1842 0.0997 0.0937 0.5181 0.0326 0.0555 0.0561

0.2 0.1797 0.0958 0.0896 0.5334 0.0275 0.0538 0.0547

0 0.1659 0.1064 0.0999 0.5347 0.0319 0.0481 0.0506

35 0.1 0.1668 0.1017 0.0951 0.5345 0.0340 0.0489 0.0508

0.2 0.1677 0.1021 0.0951 0.5369 0.0326 0.0484 0.0511

0 0.1584 0.1098 0.1034 0.5601 0.0354 0.0503 0.0528

45 0.1 0.1592 0.1087 0.1023 0.5555 0.0351 0.0469 0.0493

0.2 0.1611 0.1100 0.1042 0.5606 0.0350 0.0483 0.0504

0 0.1544 0.1127 0.1053 0.5853 0.0398 0.0476 0.0496

55 0.1 0.1583 0.1157 0.1098 0.5835 0.0400 0.0547 0.0561

0.2 0.1510 0.1123 0.1048 0.5881 0.0401 0.0524 0.0550
Results based on 10,000 simulations

Table 4: Median Bias, K2 = 30

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1907 0.1105 0.1106 0.5648 0.0157 0.0042 0.0150

25 0.1 0.1916 0.1136 0.1138 0.5828 0.0197 0.0085 0.0217

0.2 0.1933 0.1159 0.1160 0.5890 0.0287 0.0076 0.0191

0 0.1702 0.0954 0.0954 0.4059 0.0069 0.0067 0.0150

35 0.1 0.1666 0.0900 0.0901 0.4075 -0.0097 -0.0023 0.0061

0.2 0.1699 0.0946 0.0941 0.4190 -0.0025 0.0032 0.0124

0 0.1501 0.0764 0.0763 0.2939 -0.0050 0.0010 0.0079

45 0.1 0.1501 0.0789 0.0788 0.2928 -0.0079 -0.0017 0.0051

0.2 0.1502 0.0775 0.0778 0.2820 -0.0065 -0.0001 0.0057

0 0.1357 0.0670 0.0672 0.2420 -0.0100 -0.0006 0.0051

55 0.1 0.1335 0.0641 0.0642 0.2202 -0.0141 -0.0078 -0.0026

0.2 0.1365 0.0679 0.0682 0.2246 -0.0031 0.0034 0.0092
Results based on 10,000 simulations

to only those estimators whose positive integer moments are known to exist.
18See Ackerberg and Devereux (2009), Kolesár (2013), and Evdokimov and Kolesár (2018) for formulae for the

estimators IJIVE1, IJIVE2, and UJIVE as well as for the standard errors used in constructing the t-statistics for
these estimators.
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Table 5: Nine Decile Range 0.05 to 0.95, K2 = 30

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.4785 0.9885 0.9909 5.7669 3.0848 2.1434 1.7483

25 0.1 0.4760 0.9629 0.9634 6.2210 3.0543 2.1265 1.7549

0.2 0.4693 0.9735 0.9764 6.0341 2.9121 2.1675 1.7602

0 0.4501 0.8155 0.8175 6.4148 1.7734 1.4271 1.2895

35 0.1 0.4513 0.8083 0.8109 6.2439 1.8113 1.4544 1.3066

0.2 0.4427 0.7871 0.7899 6.1090 1.7457 1.3613 1.2405

0 0.4186 0.6941 0.6939 5.8258 1.2562 1.0510 0.9935

45 0.1 0.4254 0.6958 0.6969 5.9272 1.2409 1.0471 0.9948

0.2 0.4186 0.6771 0.6779 5.9727 1.2126 1.0306 0.9764

0 0.4008 0.6206 0.6211 5.7132 0.9825 0.8625 0.8287

55 0.1 0.3985 0.6087 0.6109 5.5675 0.9513 0.8614 0.8299

0.2 0.4028 0.6196 0.6214 5.4996 0.9661 0.8661 0.8354
Results based on 10,000 simulations

Table 6: 0.05 Rejection Frequencies, K2 = 30

µ2 R2
ε2|z21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.4113 0.1387 0.1214 0.5461 0.0249 0.0519 0.0534

25 0.1 0.4242 0.1425 0.1226 0.5489 0.0220 0.0518 0.0545

0.2 0.4350 0.1466 0.1266 0.5527 0.0251 0.0546 0.0565

0 0.3919 0.1526 0.1310 0.5387 0.0315 0.0531 0.0553

35 0.1 0.3901 0.1527 0.1333 0.5355 0.0298 0.0577 0.0601

0.2 0.4015 0.1535 0.1338 0.5489 0.0329 0.0572 0.0604

0 0.3624 0.1563 0.1362 0.5516 0.0339 0.0539 0.0559

45 0.1 0.3639 0.1542 0.1339 0.5396 0.0357 0.0542 0.0564

0.2 0.3764 0.1551 0.1344 0.5459 0.0370 0.0579 0.0601

0 0.3376 0.1485 0.1294 0.5676 0.0385 0.0514 0.0541

55 0.1 0.3332 0.1455 0.1277 0.5638 0.0371 0.0534 0.0558

0.2 0.3530 0.1638 0.1421 0.5686 0.0417 0.0593 0.0605
Results based on 10,000 simulations

Looking over the results reported in Tables 1-6, note first that, in terms of median bias, the

performance of FEJIV, FELIM, and FEFUL are uniformly better across our experiments when

compared to 2SLS, IJIVE1, IJIVE2, and UJIVE; although our experiments do show 2SLS, IJIVE1,

and IJIVE2 to be less dispersed than the three estimators proposed in this paper. Comparing
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FELIM and FEFUL in terms of nine decile range, we see that FEFUL tends to be less dispersed

than FELIM, which is in accord with the motivation behind the original Fuller (1977) modification.

Perhaps the most notable difference in performance is that t-statistics based on FELIM and FEFUL

have much less size distortion than t-statistics constructed from any of the other five estimators.

Finally, note that t-statistics based on the FEJIV estimator tend to be undersized, but the empirical

rejection frequencies are still closer to the nominal level than t-statistics based on 2SLS, IJIVE1,

IJIVE2, or UJIVE.

7 Conclusion

This paper considers an IV regression model with many weak instruments, cluster specific effects,

error heteroskedasticity, and possibly many included exogenous regressors. To carry out point

estimation in this setup, we propose three new jackknife-type IV estimators, which we refer to by

the acronyms FEJIV, FELIM, and FEFUL. All three of these estimators are shown to be robust

to the effects of many weak instruments, in the sense that they are shown to be consistent in

a framework broad enough to include both the standard situation with strong instruments and

situations with many weak instruments. To the best of our knowledge, the estimators proposed in

this paper are the first consistent estimators which have been developed in a many weak instrument

framework when the IV regression under consideration has both cluster specific effects and possibly

many included exogenous regressors. We establish asymptotic normality for FELIM and FEFUL

under both strong instrument and many weak instrument asymptotics. In addition, we provide

consistent standard errors for our estimators and show that, when the null hypothesis is true, t-

statistics based on these standard errors are asymptotically normal under both strong instrument

and many weak instrument asymptotics. Finally, we show that under both strong instrument and

many weak instrument asymptotics, the t-statistics based on these standard errors are consistent

under fixed alternatives. Thus, we underscore an interesting aspect of the many weak instrument

setup. Namely, test consistency is still possible under this framework, as has been pointed out in a

recent paper by Mikusheva and Sun (2021). In a series of Monte Carlo experiments, we find that

t-statistics based on FELIM and FEFUL control size better in finite samples than t-statistics based

on alternative jackknife-type IV estimators that have previously been proposed in the literature.

Hence, based on the findings of this paper, we recommend that either FELIM or FEFUL be used in

settings where there are many weak instruments, cluster specific effects, and possibly many included

exogenous regressors.
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8 Appendix: Proofs of Main Theorems and Other Key Results

This appendix provides the proofs for Theorem 1, Corollary 1, Theorems 4-5, and Corollaries 2-3

of the paper. The proofs of Theorems 2 and 3 are longer and, thus, are given in Appendix S1 of a

Supplemental Appendix to this paper. This Supplemental Appendix can be viewed at the URL:

http://econweb.umd.edu/~chao/Research/research_files/Supplemental_Appendix_to_Jackknife

_Estimation_Cluster_Sample_IV_Model_August_20_2022.pdf. In addition, the proofs pro-

vided below rely on a number of technical results that are stated without proof in Appendix S2

of the Supplemental Appendix. These results are designated in the derivations that follow by the

use of the prefix S. So, for example, Lemma S2-2 will refer to the second lemma in Appendix S2

of the Supplemental Appendix. Proofs for these additional supporting lemmas (more specifically,

Lemmas S2-1 to S2-18) are available in a separate online appendix which can be viewed at the

URL:

http://econweb.umd.edu/~chao/Research/research_files/Additional_Online_Appendix_

Jackknife_Estimation_Cluster_Sample_IV_Model_August_19_2022.pdf

Proof of Theorem 1:

To proceed, note first that, by parts (a) and (b) of Lemma S2-2 and by the assumption on `n,

we have D−1µ X ′
[
A− `nM (Z1,Q)

]
XD−1µ = D−1µ X ′AXD−1µ − `nD−1µ X ′M (Z1,Q)XD−1µ = Hn + op (1),

where Hn = Υ′Z ′2M
(Z1,Q)Z2Υ/n = Op (1). By Assumption 3(iii), we also have that Hn is positive

definite almost surely for n suffi ciently large, so that D−1µ X ′
[
A− `nM (Z1,Q)

]
XD−1µ is invertible
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w.p.a.1. Hence, w.p.a.1., we can write

1

µminn

Dµ

(
δn − δ0

)
=
(
D−1µ X ′

[
A− `nM (Z1,Q)

]
XD−1µ

)−1 1

µminn

D−1µ X ′
[
A− `nM (Z1,Q)

]
ε.

Applying Lemma S2-4 and Lemma S2-5, we get

1

µminn

D−1µ X ′
[
A− `nM (Z1,Q)

]
ε =

1

µminn

D−1µ X ′Aε− `n
1

µminn

D−1µ X ′M (Z1,Q)ε

= Op

(
max

{
1

µminn

,

√
K2,n

(µminn )2

})
+ op (1) = op (1) .

It follows by the Slutsky’s Theorem that
∥∥Dµ

(
δn − δ0

)
/
(
µminn

)∥∥
2

= op (1), which gives the first

result. To show the second result, note that, by straightforward calculations, we obtain∥∥Dµ

(
δn − δ0

)
/
(
µminn

)∥∥
2
≥
√

(µminn )2 / (µminn )2
√(

δn − δ0
)′ (

δn − δ0
)

=
∥∥δn − δ0∥∥2, which implies

that
∥∥δn − δ0∥∥2 p→ 0, as required. �

Proof of Corollary 1:

In light of the results given in Theorem 1, it suffi ces that we verify the condition `n =

op

([
µminn

]2
/n
)

= op (1) for all three estimators. For the FEJIV estimator considered in part

(a), `n = 0 for all n, so this condition is trivially satisfied. Now, part (b) considers the FE-

LIM estimator. For this estimator, the result of Lemma S2-11 has shown that we can take

`n = ̂̀
L,n = minβ∈B

(
β′X

′
AXβ

)
/
(
β′X

′
M (Z1,Q)Xβ

)
=
(
y −Xδ̂L

)′
A
(
y −Xδ̂L

)
/

[(
y −Xδ̂L

)′
M (Z1,Q)

(
y −Xδ̂L

)]
. By part (a) of Lemma S2-7, we

then have ̂̀L,n = op

([
µminn

]2
/n
)
, so FELIM also satisfies the needed condition. Finally, part (c)

considers the FEFUL estimator, which takes `n = ̂̀
F,n

=
[̂̀
L,n −

(
1− ̂̀L,n) (C/mn)

]
/
[
1−

(
1− ̂̀L,n) (C/mn)

]
. By part (b) of Lemma S2-7, we have

that ̂̀F,n = op

([
µminn

]2
/n
)
, so the needed condition is satisfied again. The consistency results

given in parts (a)-(c) of this corollary then follow as a consequence of Theorem 1. �

Proof of Theorem 4:

We shall prove this theorem for the FELIM case since the proof for FEFUL is similar. To

proceed, first define SL,1 = X ′AD (J [̂εL ◦ ε̂L])AX, SL,2 = (ε̂L ◦ ε̂L)′ J (A ◦A) J
(
ε̂Lι
′
d ◦M (Z,Q)X

)
,

SL,3 = (ε̂L ◦ ε̂L)′ J (A ◦A) J (ε̂L ◦ ε̂L), SL,4 =
(
ε̂Lι
′
d ◦ ÛL

)′
J (A ◦A) J

(
ε̂Lι
′
d ◦ ÛL

)
,

ĤL = X ′
[
A− ̂̀L,nM (Z1,Q)

]
X, Σ1,n = Υ′Z ′2M

(Z1,Q)Dσ2M
(Z1,Q)Z2Υ/n. In addition, also define

σ2(i,t) = E
[
ε2(i,t)|F

Z
n

]
, φ(i,t) = E

[
U(i,t)ε(i,t)|FZn

]
, Ψ(i,t) = E

[
U(i,t)U

′
(i,t)|F

Z
n

]
, φ

(i,t)
= E

[
U (i,t)ε(i,t)|FZn

]
,

and Ψ(i,t) = E
[
U (i,t)U

′
(i,t)|FZn

]
where U (i,t) = U(i,t) − ρε(i,t) and where for notational convenience
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we suppress the dependence of σ2(i,t), φ(i,t), Ψ(i,t), φ(i,t), and Ψ(i,t) on FZn = σ (Z).

Using these notations, to show part (a), we first write DµV̂LDµ = V̂L,1 + V̂L,2 + V̂L,3 + V̂L,4,

where V̂L,1 =
(
D−1µ ĤLD

−1
µ

)−1
D−1µ SL,1D

−1
µ

(
D−1µ ĤLD

−1
µ

)−1
,

V̂L,2 = −
(
D−1µ ĤLD

−1
µ

)−1
D−1µ

(
ρ̂LSL,2 + S′L,2ρ̂

′
L

)
D−1µ

(
D−1µ ĤLD

−1
µ

)−1
,

V̂L,3 =
(
D−1µ ĤLD

−1
µ

)−1
D−1µ ρ̂LSL,3ρ̂

′
LD
−1
µ

(
D−1µ ĤLD

−1
µ

)−1
, and V̂L,4 =

(
D−1µ ĤLD

−1
µ

)−1
×D−1µ SL,4D

−1
µ

(
D−1µ ĤLD

−1
µ

)−1
. Now, consider V̂L,1 first. Note that, by Lemma S2-17,

D−1µ X ′AD (ε ◦ ε)AXD−1µ = Σ1,n +

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)D

−1
µ Ψ(j,s)D

−1
µ + op (1) ,

from which we deduce that D−1µ X ′AD (ε ◦ ε)AXD−1µ = Op (1) using Assumptions 2(i) and 3(iii),

Lemma S2-1 part (a), and the assumption that K2,n/
(
µminn

)2
= O (1) under Case I.

Next, note that by Lemma S2-11,̂̀
L =

(
y −Xδ̂L

)′
A
(
y −Xδ̂L

)
/
(
y −Xδ̂L

)′
M (Z1,Q)

(
y −Xδ̂L

)
. Moreover, by the result given

in Lemma S2-10, we have that D−1µ ĤLD
−1
µ = Hn + op (1), where, by Assumption 3(iii), Hn =

Υ′Z ′2M
(Z1,Q)Z2Υ/n is positive definite a.s.n. In addition, we can apply part (a) of Lemma S2-18

and Slutsky’s theorem to deduce that

V̂L,1 =
(
D−1µ ĤLD

−1
µ

)−1
D−1µ SL,1D

−1
µ

(
D−1µ ĤLD

−1
µ

)−1
= H−1n Σ1,nH

−1
n +H−1n

 mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)D

−1
µ Ψ(j,s)D

−1
µ

H−1n + op (1) . (21)

Next, consider V̂L,2. Here, note that we can further decompose V̂L,2 as V̂L,2 = V̂L,2,1 + V̂L,2,2, where

V̂L,2,1 = −
(
D−1µ ĤLD

−1
µ

)−1
D−1µ ρ̂LSL,2D

−1
µ

(
D−1µ ĤLD

−1
µ

)−1
and

V̂L,2,2 = −
(
D−1µ ĤLD

−1
µ

)−1
D−1µ S′L,2ρ̂

′
LD
−1
µ

(
D−1µ ĤLD

−1
µ

)−1
. Noting that K2,n/

(
µminn

)2
= O (1)

under Case I and applying the result of Lemma S2-10, as well as parts (d) and (e) of Lemma S2-18

and Slutsky’s theorem, we get

V̂L,2,1 = −H−1n
K2,n

(µminn )

{
D−1µ ρ+D−1µ (ρ̂L − ρ)

} µminn

K2,n
SL,2D

−1
µ H−1n (1 + op (1))

= −H−1n D−1µ ρ

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)φ

′
(j,s)D

−1
µ H−1n + op (1) .
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Moreover, since V̂L,2,2 = V̂ ′L,2,1, we also have

V̂L,2,2 = −H−1n
∑

(i,t),(j,s)=1:mn,(i,t) 6=(j,s)
A2(i,t),(j,s)σ

2
(i,t)D

−1
µ φ(j,s)ρ

′D−1µ H−1n +op (1). Given that V̂L,2 =

V̂L,2,1 + V̂L,2,2, it follows from these calculations that

V̂L,2 = −H−1n
mn∑

(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)D
−1
µ

(
ρσ2(i,t)φ

′
(j,s) + σ2(i,t)φ(j,s)ρ

′
)
D−1µ H−1n + op (1) (22)

Turning our attention to V̂L,3, note that, in this case, we can apply Lemma S2-10, parts (b) and

(e) of Lemma S2-18, and Slutsky’s theorem to obtain

V̂L,3 = K2,nH
−1
n

[
D−1µ ρ+D−1µ (ρ̂L − ρ)

] SL,3
K2,n

ρ′D−1µ H−1n (1 + op (1))

+K2,nH
−1
n

[
D−1µ ρ+D−1µ (ρ̂L − ρ)

] SL,3
K2,n

(ρ̂L − ρ)′D−1µ H−1n (1 + op (1))

= H−1n D−1µ ρ

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)σ

2
(j,s)ρ

′D−1µ H−1n + op (1) . (23)

Lastly, we consider V̂L,4. Here, we can apply Lemma S2-10, part (f) of Lemma S2-18, the fact that

K2,n/
(
µminn

)2
= O (1) under Case I, as well as Slutsky’s theorem to obtain

V̂L,4 = H−1n D−1µ SL,4D
−1
µ H−1n (1 + op (1))

= H−1n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)D
−1
µ φ

(i,t)
φ′
(j,s)

D−1µ H−1n + op (1) . (24)

It follows from equations (21), (22), (23), and (24) that

DµV̂LDµ = H−1n Σ1,nH
−1
n +H−1n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)D

−1
µ Ψ(j,s)D

−1
µ H−1n

+H−1n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)D
−1
µ φ

(i,t)
φ′
(j,s)

D−1µ H−1n + op (1)

= H−1n (Σ1,n + Σ2,n)H−1n + op (1) = ΛI,n + op (1) .

To show the same result for FEFUL, note that δ̂F satisfies the conditions of both Lemma

S2-12 and Lemma S2-18. Hence, we can make the same argument as given above for FELIM,
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except that we use the result of Lemma S2-12 in lieu of Lemma S2-10 to obtain DµV̂FDµ =

H−1n (Σ1,n + Σ2,n)H−1n + op (1) = ΛI,n + op (1).

To show part (b), we again only provide an explicit argument for V̂L since the proof of V̂F

follows in a similar way. To proceed, write
[(
µminn

)2
/K2,n

]
DµV̂LDµ =

[(
µminn

)2
/K2,n

]∑4

`=1
V̂L,`,

where V̂L,1, V̂L,2, V̂L,3, and V̂L,4 are as defined in the proof of part (a).

Considering V̂L,1 first, note that, since K2,n/
(
µminn

)2 →∞ but
√
K2,n/

(
µminn

)2 → 0 under Case

II, we have, upon applying the result of Lemma S2-10, part (a) of Lemma S2-18, and Slutsky’s

theorem,

(
µminn

)2
K2,n

V̂L,1 = H−1n

(
µminn

)2
K2,n

Σ1,n +

mn∑
(i,t),(j,s)=1
(i,t) 6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)D

−1
µ Ψ(j,s)D

−1
µ

H−1n (1 + op (1))

= H−1n

(
µminn

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)σ
2
(i,t)D

−1
µ Ψ(j,s)D

−1
µ H−1n + op (1) . (25)

Now, consider V̂L,2. Here, we write
[(
µminn

)2
/K2,n

]
V̂L,2 =

[(
µminn

)2
/K2,n

]
V̂L,2,1

+
[(
µminn

)2
/K2,n

]
V̂L,2,2, where V̂L,2,1 and V̂L,2,2 are again as defined in the proof of part (a). Making

use of the results of Lemma S2-10, parts (d) and (e) of Lemma S2-18, and Slutsky’s theorem while

noting that K2,n/
(
µminn

)2 →∞ under Case II, we get

(
µminn

)2
K2,n

V̂L,2,1 = −H−1n
(
µminn

) {
D−1µ ρ+D−1µ (ρ̂L − ρ)

} µminn

K2,n
SL,2D

−1
µ H−1n (1 + op (1))

= −H−1n

(
µminn

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)D
−1
µ ρσ2(i,t)φ

′
(j,s)D

−1
µ H−1n + op (1)

Moreover, since V̂L,2,2 = V̂ ′L,2,1, we also have[(
µminn

)2
K−12,n

]
V̂L,2,2 = −H−1n

[(
µminn

)2
K−12,n

]∑mn

(i,t),(j,s)=1
(i,t) 6=(j,s)

A2(i,t),(j,s)D
−1
µ φ(j,s)σ

2
(i,t)ρ

′D−1µ H−1n +op (1).

It follows from these calculations that(
µminn

)2
V̂L,2

K2,n
= −H−1n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

(
µminn

)2
A2(i,t),(j,s)

K2,n
D−1µ

(
ρσ2(i,t)φ

′
(j,s) + φ(j,s)σ

2
(i,t)ρ

′
)
D−1µ H−1n +op (1) .

(26)

Next, consider V̂L,3. Given that K2,n/
(
µminn

)2 →∞ under Case II, we get, upon applying the result
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given in Lemma S2-10, as well as parts (b) and (e) of Lemma S2-18 and Slutsky’s theorem,

(
µminn

)2
K2,n

V̂L,3 =
(
µminn

)2
H−1n

[
D−1µ ρ+D−1µ (ρ̂L − ρ)

] SL,3
K2,n

ρ′D−1µ H−1n (1 + op (1))

+
(
µminn

)2
H−1n

[
D−1µ ρ+D−1µ (ρ̂L − ρ)

] SL,3
K2,n

(ρ̂L − ρ)′D−1µ H−1n (1 + op (1))

= H−1n

mn∑
(i,t),(j,s)=1
(i,t) 6=(j,s)

(
µminn

)2
A2(i,t),(j,s)

K2,n
D−1µ ρσ2(i,t)σ

2
(j,s)ρ

′D−1µ H−1n + op (1) (27)

Finally, we consider V̂L,4. Again, noting that K2,n/
(
µminn

)2 → ∞ under Case II, we have, upon

applying the result given in Lemma S2-10, as well as part (f) of Lemma S2-18 and Slutsky’s theorem,

(
µminn

)2
K2,n

V̂L,4 = H−1n

(
µminn

)2
K2,n

D−1µ SL,4D
−1
µ H−1n (1 + op (1))

= H−1n

(
µminn

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t) 6=(j,s)

A2(i,t),(j,s)D
−1
µ φ

(i,t)
φ′
(j,s)

D−1µ H−1n + op (1) . (28)

It follows from equations (25), (26), (27), and (28) that

(
µminn

)2
DµV̂LDµ

K2,n
= H−1n

(
µminn

)2
K2,n

mn∑
(i,t),(j,s)=1
(i,t)6=(j,s)

A2(i,t),(j,s)D
−1
µ

(
σ2(i,t)Ψ(j,s) + φ

(i,t)
φ′
(j,s)

)
D−1µ H−1n + op (1)

=

(
µminn

)2
K2,n

H−1n Σ2,nH
−1
n + op (1) = ΛII,n + op (1) .

To show the same result for FEFUL, note again that δ̂F satisfies the conditions of Lemmas S2-12

and S2-18. Hence, we can make the same argument as given above for FELIM, except using Lemma

S2-12 in lieu of Lemma S2-10 to obtain
[(
µminn

)2
/K2,n

]
DµV̂FDµ =[(

µminn

)2
/K2,n

]
H−1n Σ2,nH

−1
n + op (1) = ΛII,n + op (1). �

Proof of Theorem 5:

To show part (a), first note that, by part (d) of Lemma S2-3 and Assumption 3(iii), ΛI,n is

positive definite a.s.n. In addition, making use of part (a) of Theorem 4, we have DµV̂LDµ =
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ΛI,n + op (1), so that DµV̂LDµ is positive definite w.p.a.1. Hence, under H0 : c′δ0 = r, we can write

TL =
c′δ̂L,n − r√

c′V̂Lc
=
c′
(
δ̂L,n − δ0

)
√
c′V̂Lc

=

(
c′D−1µ µ∗n (c)

)
Λ
1/2
I,n

[
Λ
−1/2
I,n Dµ

(
δ̂L,n − δ0

)]
√(

c′D−1µ µ∗n (c)
)
DµV̂LDµ

(
µ∗n (c)D−1µ c

)
Applying Theorem 2, we have Λ

−1/2
I,n Dµ

(
δ̂L,n − δ0

)
d→ N (0, Id). It follows by the definition of c∗

given in Assumption 10, as well as by applying part (a) of Theorem 4 and the continuous mapping

theorem that

TL =
c′∗Λ

1/2
I,n

[
Λ
−1/2
I,n Dµ

(
δ̂L,n − δ0

)]
√
c′∗ΛI,nc∗

[1 + op (1)]
d→ N (0, 1) . (29)

On the other hand, under H1, we have c′δ0 = r + h for some h ∈ R\ {0}, and we can write
TL =

(
c′δ̂L,n − r

)
/

√
c′V̂Lc = c′

(
δ̂L,n − δ0

)
/

√
c′V̂Lc+h/

√
c′V̂Lc. The first term above isOp (1) , as

shown in (29) above, whereas application of part (a) of Theorem 4, Assumption 10, and the Slutsky’s

theorem shows that (µ∗n (c))2 c′V̂Lc =
(
c′D−1µ µ∗n (c)

)
DµV̂LDµ

(
µ∗n (c)D−1µ c

)
= c′∗ΛI,nc∗ + op (1),

where c′∗ΛI,nc∗ > 0 since ΛI,n is positive definite in light of part (d) of Lemma S2-3 and Assumption

3(iii) and since c∗ 6= 0 by construction. In addition, by parts (a) and (c) of Lemma S2-3; Assumption

3(iii); and the fact that, under Case I,K2,n/
(
µminn

)2
= O (1); there exists a positive constant C <∞

such that, almost surely for all n suffi ciently large,

λmax (ΛI,n) ≤
λmax

[
V C

(
Υ′Z ′2M

(Z1,Q)ε/
√
n
)
|FZn

]
+

K2,n

(µminn )2
λmax

[
V C

(
U ′Aε/

√
K2,n

)
|FZn

]
[λmin (Hn)]2

≤ C.

(30)

It follows that, in this case, h/
√
c′V̂Lc = µ∗n (c)h/

√
(µ∗n (c))2 c′V̂Lc =

(
µ∗n (c)h/

√
c′∗ΛI,nc∗

)
[1 + op (1)].

So, w.p.a.1, h/
√
c′V̂Lc→ +∞ if h > 0, whereas h/

√
c′V̂Lc→ −∞ if h < 0, from which the stated

result follows. Finally, note that the results for TF can be shown in the same way, so to avoid

redundancy, we omit the proof.

To show part (b), we first let L̃n = µ∗n (c) c′D−1µ ; and note that, by Assumption 10, there

exist a constant vector c∗ 6= 0 and a positive constant C such L̃n = µ∗n (c) c′D−1µ → c′∗ and

c′∗ΛII,nc∗ ≥ C > 0 a.s.n. It follows that, in this case, the conditions for L̃n given in Theorem 3 are

trivially satisfied. Applying Theorem 3, we then obtain(
µminn /

√
K2,n

) [
µ∗n (c) c′D−1µ ΛII,nD

−1
µ cµ∗n (c)

]−1/2
µ∗n (c) c′D−1µ

[
Dµ

(
δ̂L,n − δ0

)]
=
(
µminn /

√
K2,n

)
[c′∗ΛII,nc∗]

−1/2 c′∗

[
Dµ

(
δ̂L,n − δ0

)]
[1 + op (1)]

d→ N (0, 1). Moreover,[(
µminn

)2
/K2,n

]
DµV̂LDµ = ΛII,n + op (1) by part (b) of Theorem 4. Now, under H0 : c′δ0 = r, we
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can write

TL =
c′δ̂L,n − r√

c′V̂Lc
=

(
µminn /

√
K2,n

)
µ∗n (c) c′D−1µ

[
Dµ

(
δ̂L,n − δ0

)]
√(

µ∗n (c) c′D−1µ
) [{

(µminn )2 /K2,n

}
DµV̂LDµ

] (
D−1µ cµ∗n (c)

)
from which it follows that

TL =

(
µminn /

√
K2,n

)
c′∗

[
Dµ

(
δ̂L,n − δ0

)]
√
c′∗ΛII,nc∗

[1 + op (1)]
d→ N (0, 1) . (31)

Under H1, we again write c′δ0 = r+h for some h ∈ R\ {0}, and note that, in this case, by applying
Assumption 10, part (b) of Theorem 4, and Slutsky’s theorem; we have

(µ∗n (c))2
{(
µminn

)2
/K2,n

}
c′V̂Lc =

(
µ∗n (c) c′D−1µ

) [{(
µminn

)2
/K2,n

}
DµV̂LDµ

] (
D−1µ cµ∗n (c)

)
= c′∗ΛII,nc∗ + op (1). Moreover, there exists a positive constant C such that c′∗ΛII,nc∗ ≥ C > 0

a.s.n. by Assumption 10. In addition, by part (c) of Lemma S2-3 and Assumption 3(iii), there

exists a positive constant C such that, almost surely for all n suffi ciently large

λmax (ΛII,n) ≤
(
µminn

)2
K2,n

1

[λmin (Hn)]2
K2,n

(µminn )2
λmax

[
V C

(
U ′Aε√
K2,n

)
|FZn

]
≤ C <∞. (32)

It follows that, for this case,

h√
c′V̂Lc

=
µ∗n (c)

(
µminn /

√
K2,n

)
h√

(µ∗n (c))2
{

(µminn )2 /K2,n

}
c′V̂Lc

=
µ∗n (c)

(
µminn /

√
K2,n

)
h√

c′∗ΛII,nc∗
[1 + op (1)] .

Hence, w.p.a.1, h/
√
c′V̂Lc→ +∞ if h > 0 whereas h/

√
c′V̂Lc→ −∞ if h < 0, given the condition

that
(
µminn

)2
/
√
K2,n →∞ and given that, by construction, µminn /µ∗n (c) = O (1). Finally, write

TL =
c′δ̂L,n − r√

c′V̂Lc
=
c′
(
δ̂L,n − δ0

)
√
c′V̂Lc

+
h√
c′V̂Lc

.

Since the first term on the right-hand side above is Op (1) as shown in (31), we deduce that w.p.a.1,

TL → +∞ if h > 0 and TL → −∞ if h < 0. The results for TF can be shown in the same way,
so to avoid redundancy, we omit the proof. �

Proof of Corollary 2: Note that the assumptions and setup of Corollary 2 is essentially the same

as that of Theorem 5, except that we do not assume the more general conditions given in Assumption
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10 but rather we assume the specialized structure where Dµ = µminn · Id. Hence, to prove this
corollary, we need to show that Dµ = µminn · Id implies that Assumption 10 is satisfied. To proceed,
note that, trivially in this case, µ∗n (c) = µminn so that µ∗n (c)D−1µ c = µminn

[(
µminn

)−1 · Id] c = c for all

n. Thus, c∗ = c 6= 0 in this case. Moreover, there exists a positive constant C such that c′∗ΛII,nc∗ =

c′ΛII,nc =
(
µminn

)2
c′H−1n Σ2,nH

−1
n c/K2,n =

(
µminn

)2
c′H−1n D−1µ V C

(
U ′Aε/

√
K2,n|FZn

)
D−1µ H−1n c =

c′H−1n V C
(
U ′Aε/

√
K2,n|FZn

)
H−1n c ≥ C > 0 a.s.n. for all c 6= 0, by the almost sure positive

definiteness of V C
(
U ′Aε/

√
K2,n|FZn

)
as shown in part (b) of Lemma S2-3, which completes the

proof. �

Proof of Corollary 3: Note that the assumptions and setup of Corollary 3 is essentially the

same as that of Theorem 5, except that we do not assume the more general conditions given in

Assumption 10. Instead, we consider the special case where c = e` for ` ∈ {1, ..., d}; and, in lieu
of Assumption 10, we assume the condition that there exists a positive constant C∗ such that

e′`H
′
2·H2·e` ≥ C∗ > 0 a.s.n. Hence, to prove this corollary, we need to show that, in the case

where the problem of interest is testing the null hypothesis H0 : c′δ0 = e′`δ0 = r, the condition

that e′`H
′
2·H2·e` ≥ C∗ > 0 a.s.n. implies the conditions given in Assumption 10. To proceed, note

first that since c = e` here, we have µ∗n (c) = min
{
µg,n|g ∈ {1, ..., d} and cg 6= 0

}
= µ`,n, so that

µ∗n (c)D−1µ c = µ`,nD
−1
µ e` = µ`,n

(
µ`,n

)−1
e` = e`. Thus, c∗ = e` 6= 0 in this case. Moreover, note

that (
µminn

)
D−1µ =

(
µminn

)( D−11 0

0
(
µminn

)−1 · Id2
)
→
(

0 0

0 Id2

)
= D0, (say) .

It follows that, in this case, c′∗ΛII,nc∗ = e′`ΛII,ne` =
(
µminn

)2
e′`H

−1
n D−1µ Σ∗2,nD

−1
µ H−1n e`/K2,n

= e′`H
−1
n D0V C

(
U ′Aε/

√
K2,n|FZn

)
D0H

−1
n e` [1 + oa.s. (1)] ≥ Ce′`H

′
2·H2·e` ≥ CC∗ = C > 0 a.s.n.,

by the fact that V C
(
U ′Aε/

√
K2,n|FZn

)
≥ CId a.s.n. for some positive constant C, as shown in

part (b) of Lemma S2-3, and by the assumption that e′`H
′
2·H2·e` ≥ C∗ > 0 a.s.n.. This completes

the proof. �
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