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Abstract 

Greenhouse gas emissions from wildfires are substantial, and yet were given very little scrutiny in the 
Kyoto Protocol until very recently. The main reason for this was the assumption that forests would 
naturally recover fully over time, an assumption now largely challenged by on-site carbon sequestration 
studies. In this study, we produce the first large scale assessment of long-term forest recovery from 
wildfires, contributing to a better understanding of the environmental damages from forest fires and 
their economic valuation. Utilizing a matching strategy for fires of 2000, we find that after 18 years, on 
average, fire-damage has caused 61% reduction in the presence of forests and at least a 26% average 
reduction of carbon stored. The costs of compensation for this loss alone rise to estimates over $5.9 
billion, while not doing so impedes the effectiveness of climate change policy. With more accurate data 
soon-to-be released to public, these estimates are likely to be even larger. 
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intensity for the estimation. That being said, perimeters for 1 and 5 km have also been tested in section 
8, ensuring robustness. Central results of the study were not affected. 

 In light of the discussion so far, Fig. 4 presents the scope of pixels in both the outer perimeter 
around the burnt regions which included to represent the controls, as well as the inner perimeter 
within which the control pixels were excluded as they are suspected be indirectly affected by the fires. 
The outer perimeter for the baseline specification of the data is set at 10 km This “radius” can also be 
seen as a “caliper” by which we can ensure the controls are more comparable in terms of their qualities 
which we cannot quantitatively observe from our data, considering the broadness of the categorical 
definitions used by CLC. That being said, similar to the extent of excluded pixels within the inner 
perimeter, we tested several radii of proximity ranging from 10 to 20 km for the outer edge. The 
central results were once again unaffected. These different specifications as well as their results is 
discussed in greater detail both under the sections of model consistency, regarding the overlap 
assumption, and robustness checks. 

 Finally, it is also important to note that for computational ease, control and treatment groups 
are coupled based on NUTS II regions through exact matching. As such, matching is only done based 
on counterfactuals in relatively close proximity. This does not cause any significant issues covariate 
balance for the baseline model while providing estimations much faster, though technically the 
extended version might have suffered due to overall lower presence of some of the geographical 
covariates. 

5. Results 

5.1. Impact on Land Use 

As Rubin (2008) recommends, before commenting on the results of a model, one should make sure 
that the model specified sufficiently balances the covariates. Hence, before the results of either 
specification, we will comment on the properties of the matching process. For a fully balanced set of 
covariates, ideal standardized differences would be 0, while the variance ratio would be 1. With (I) 
shown in Table 3, we can see that matching has been quite successful by these metrics. Expectedly, 
with the overabundance of controls, appropriate matches were found for every treated observation. 
These levels indicate that covariate distribution is balanced, as they do not vary over treatment levels. 
The raw data for (I) indicates that while for Easting was quite balanced (and similarly, though less so, 
with Northing), with less than a difference of 0.1 with respect to the variance ratio, the matched data is 
much closer to ideal values. Based on these findings we determined that the baseline specification 
indeed provides good balance for covariates. 

 The extended specification, (II), does not show such a level of balance in all dimensions. This 
is partly to be expected, as the number of covariates increase, it becomes exponentially difficult to 
maintain the same level of overall quality in terms of matches. Further, some of the geographical 
covariates are very sparsely distributed, in the first place. As Table 3 specifies, artificial surfaces 
account for less than 4% of the total land mass. This causes some of the control groups to be at 
undesirably different distances to such surfaces, in comparison to the treated observations. 
Nevertheless, outside of two covariates (namely the distance to artificial surfaces and agricultural 
areas) matched data provides values much closer to the ideal. In order to address the issue balance for 
these two covariates, more accurate datasets could be used as support. European data on road-
networks could greatly increase precision if utilized for support, as the roads at the resolution of CLC 
that we are using can be difficult to accurately represent. Nevertheless, even with this relative 
imbalance, as we will touch on next, the results are globally robust, considering the fact that ATEs 
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associated with the covariates (e.g. impact on agricultural areas) are not statistically different in 
significance from specification (I) to (II).  

 Table 2 displays the ATEs for the baseline model estimations, denoted as (I), and its extended 
specification, with the covariates denoting distance to geographically relevant factors, (II). In either 

Table 2 ― Impact of fires on land use after 18 years. 
Impact on Forests (I) (II) 

ATE 
-0.27*** -0.29*** 

(0.0097) (0.011) 

Percentage impact -61% -65% 
Impact on Artificial Surfaces (I) (II) 

ATE 
-0.0024 -0.00045 
(0.0022) (0.0037) 

Percentage impact -29% -5.3% 

Impact on Agricultural Areas (I) (II) 

ATE 
-0.028***  -0.0013 

(0.0056)   (0.11) 

Percentage impact -46% -2.1% 
Impact on Natural Grasslands, Moors, 
and Heathland (I) (II) 

ATE 
0.061*** 0.10*** 

(0.0091) (0.0075) 

Percentage impact +37% +65% 
Impact on Sclerophyllous Vegetation, 
Transitional Woodland-shrubs (I) (II) 

ATE 
 0.23***  0.16*** 

(0.011) (0.015) 

Percentage impact +73% +53% 

Impact on Burnt Areas (I) (II) 

ATE 
0.0011  0.0023 

(0.0015)  (0.0021) 

Percentage impact +15% +30% 
Impact on Other Categories of Land (I) (II) 

ATE 0.016***  0.019*** 
(0.0056)  (0.0033) 

Percentage impact +114% +139% 
Notes: Each impact category represents a separate estimation. “Percentage impact” refers to the 
ratio of average treatment effect and the mean value of the control group, indicating the 
percentage difference, between control and treatment groups, of which is due to the fires. 
Information on the observations and the group means are shared in Table 3. Abadie-Imbens 
robust standard errors are provided in parentheses. The indicators for statistical significance are 
as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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case, we can see that the central results regarding the impact on forests is both highly significant at 1% 
and concerning in its implications regarding the magnitude. For (I), we find that compared to the 
counterfactual regions, burnt plots show 61% less presence of forests, after 18 years. Forests go from 
covering 44% of the total surface of burnt regions, to only 12%, with majority being found to have been 
caused by fire damage. Going by this specification alone, the non-forest greenery (indicated by natural 
grasslands, moors, heathland, sclerophyllous vegetation, and transitional woodland-shrubs) 
significantly increase in occupation. Sclerophyllous vegetation, and transitional woodland-shrubs 
specifically, show an increase of 73%. This is consistent with the categorical definitions provided by the 
CLC standards, as the transitional woodland-shrubs, specifically, can represent “woodland 
degradation” and includes areas occupied by “damaged or dead trees and shrubs” (Kosztra et al. 2017). 
Considering the lower capabilities of such vegetation for carbon storage, we can already see strong 

Table 3 ― The covariate balance and estimation details on specifications (I) and (II). 

 (I) (II) 
Observations Raw Matched Raw Matched 

Total Observations 390,927 781,854 390,927 781,854 
Treated Observations 6,874 390,927 6,874 390,927 
Control Observations 384,053 390,927 384,053 390,927 

Standardized Differences Raw Matched Raw Matched 
Easting 0.13 0.00033 0.13 -0.0031 
Northing 0.055 -0.017 0.055 -0.027 
Distance to artificial surfaces ― ― -0.037 -0.16 
Distance to agricultural areas ― ― -0.022 -0.12 
Distance to past burnt regions ― ― 0.17 0.13 
Distance to water bodies ― ― 0.12 -0.047 

Variance ratio Raw Matched Raw Matched 
Easting 1.065 0.99 1.065 0.99 
Northing 0.71 1.082 0.71 1.12 
Distance to artificial surfaces ― ― 0.74 0.73 
Distance to agricultural areas ― ― 0.94 0.68 
Distance to past burnt regions ― ― 1.28 1.01 
Distance to water bodies ― ― 1.24 0.92 

Outcome Means Treatment Control Treatment Control 

Forests 0.12 0.44 0.12 0.44 

Artificial Surfaces 0.0058 0.0084 0.0058 0.0084 

Agricultural Areas 0.049 0.062 0.049 0.062 

Natural Grasslands, Moors, 
and Heathland 

0.24 0.16 0.24 0.16 

Sclerophyllous vegetation, 
transitional woodland-shrubs 

0.54 0.31 0.54 0.31 

Burnt areas 0.017 0.0075 0.017 0.0075 

Other 0.029 0.014 0.029 0.014 

Number of matches 2 2 

Notes: Each category represents the share percentage of land group to which their pixels belong. Thus, the 
outcome means for the categories sum up to 1, barring approximations used for reporting, for each group. 
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Fig. 5 ― Land use distribution in burnt and non-burnt areas in 2018. 

 

Notes: Each category is selected based on the categories of Table 1. Average treatment effects indicate the 
difference in mean share of a given category between the two groups, on a scale of 0 to 1, of which are due 
to fires. Error bars for average treatment effects indicate the Abadie-Imbens standard errors. 
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implications regarding the effects on carbon sequestration. Burnt regions areas as well as artificial 
surfaces were found not to have been significantly affected, while minor impact (in absolute values) 
can be observed on agricultural areas and regions primarily occupied other forms of land use (-0.028 
and 0.016, to be specific). The statistical insignificance of burnt areas indicate potential for fire 
recurrence, there will be more consideration of this possibility in the discussion section. Ultimately, 
the central results of (I) are undeniably strong in magnitude and highly significant. It shows that 
wildfires indeed degrade forests to the extent that even after 18 years, more than half of them fail to 
comparably regenerate. 

 The resulting distribution of land can be seen in Fig. 5. There is an overwhelming decrease of 
forests, while a stark increase in various grasslands, shrubs, and otherwise vegetation known to hold 
much smaller biomass and ability to sequester carbon in the long-term. Without the specification (II), 
however, one could consider this transition in vegetation as due to proximity to some of the 
aforementioned geographical factors. Perhaps these areas were deforested not due to wildfires, but 
instead, logging activities. It could be that there are qualities which render forests that are likely to 
burn, also attractive for logging. Hence, we might have seen the same trend regardless. To examine 
this, the results extended model (II) would be useful to understand. 

 For (II), central findings are not just reaffirmed but impact on forests and some vegetation has 
increased in magnitude, while staying just as significant. With 65% lower presence, we are almost 
looking at only a third of the forests able to recover, on average. For less productive vegetation such as 
grasslands, moors and heathlands, the fire impact increased their presence by 65%. These results 
provide further evidence that long-term impact on forests, as past literature analyzed at smaller scales, 
is significantly negative, despite fact that the scale of the study covers various climates, genera of 
vegetation, and geographies. These aspects are further investigated in the section on robustness checks, 
with relevant variations on both methodological parameters and data specifications.   

5.2 Short and Medium-term Impacts 

Aside from estimating the impact only for 2018, it will be useful to have a broader perspective on the 
evolution the impacts of wildfires on forests. For this purpose, we have also estimated the impact of 
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fires of 2000, for prior years. This discussion will provide a more temporal dimension to the impact we 
are interested in observing and show how the vegetation covering these regions change over time. 

 Despite the persistence of their effects, fires naturally tend to have the strongest impact on 
forests in the short-term, weakening in its effects in time. This should imply that the impact should be 
the strongest on forests in 2006, lowering it only to be replaced by a transitional and much less dense 

Table 4 ― Impact of fires on land use for the years 2000, 2006, and 2012. 
Impact on Forests (III) (IV) 

ATE 
-0.32*** -0.30*** 
(0.0086) (0.0094) 

Percentage impact -68% -65% 
Impact on Artificial Surfaces (III) (IV) 

ATE 
-0.0039* -0.0030 
(0.0018) (0.0021) 

Percentage impact -60% -37% 

Impact on Agricultural Areas (III) (IV) 

ATE 
-0.025*** -0.028*** 
(0.0052) (0.0056) 

Percentage impact -47% -46% 
Impact on Natural Grasslands, Moors, and 
Heathland (III) (IV) 

ATE 
0.047*** 0.059*** 
(0.0093) (0.0090) 

Percentage impact +28% +36% 
Impact on Sclerophyllous Vegetation, 
Transitional Woodland-shrubs (III) (IV) 

ATE 
0.28*** 0.25*** 
(0.0090) (0.010) 

Percentage impact +90% +86% 

Impact on Burnt Areas (III) (IV) 

ATE 
0.0068** 0.0053*** 
(0.0032) (0.0011) 

Percentage impact +91% +318% 
Impact on Other Categories of Land (III) (IV) 

ATE 0.016*** 0.013** 
(0.0055) (0.054) 

Percentage impact +137% +93% 
Notes: Each impact category represents a separate estimation. “Percentage impact” refers to the ratio of 
average treatment effect and the mean value of the control group, indicating the percentage difference, 
between control and treatment groups, of which is due to the fires. Information on the observations 
and the group means are shared in Table 5. Abadie-Imbens robust standard errors are provided in 
parentheses. The indicators for statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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Table 5 ― The covariate balance and estimation details on specifications (III), and (IV). 
 (III) (IV) 
Observations Raw Matched Raw Matched 

Total Observations 390,927 781,854 390,927 781,854 

Control Observations 6,874 390,927 6,874 390,927 

Treated Observations 384,053 390,927 384,053 390,927 

Standardized Differences Raw Matched Raw Matched 

Easting 0.13 0.00033 0.13 0.00033 

Northing 0.055 -0.017 0.055 -0.017 

Variance ratio Raw Matched Raw Matched 

Easting 1.066 0.99 1.066 0.99 

Northing 0.71 1.082 0.71 1.082 

Outcome Means Treatment Control Treatment Control 

Forests 0.10 0.47 0.12 0.46 

Artificial Surfaces 0.0017 0.0066 0.0081 0.0042 

Agricultural Areas 0.033 0.053 0.043 0.061 

Natural Grasslands, Moors, 
and Heathland 

0.22 0.16 0.24 0.16 

Sclerophyllous vegetation, 
transitional woodland-
shrubs 

0.59 0.29 0.55 0.29 

Burnt areas 0.015 0.0074 0.012 0.0017 

Other 0.034 0.012 0.028 0.012 

Number of matches 2 2 

Notes: Since each category represents the share percentage of land group their pixels belong to, 
the means for the categories add up to 1 for each group, barring approximations. 

 

form of vegetation. Depending on the severity and frequency of fires, both forest and recovery 
characteristics might change (Stevens-Rumann and Morgan, 2016). So we could observe a change in 
the categories of vegetation which prevail such drastic impacts. With specifications, (III) and (IV), as 
shown in Tables 4 and 5, this is exactly what we observe. There is not much to mention regarding 
covariate balance, as they area expectedly the same, but in terms of magnitudes of impact, a more 
complete story can be seen. We can first observe that the impact on forests decline in time, from 68% 
lower presence on average, to 61% in (I).  

This decline is also accompanied by a strong presence of transitional woodland-shrubs and 
sclerophyllous vegetation, as expected. There also seems to be an increased presence of grasslands, 
moors and heathlands. Perhaps, in line with Stevens-Rumann & Morgan (2016), as the damaged areas 
recover, transitional vegetation begins to decline and be replaced by relatively more vigorous 
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Table 6 ― Impact of fires on biomass carbon density of forests, and all land, in 2010. 
Impact on Forests (AGBC) (BGBC) 

ATE 
-10.58*** -2.28*** 

(0.82) (0.47) 

Percentage impact -32% -18% 
Impact on All Land (AGBC) (BGBC) 

ATE 
-5.86*** -1.66*** 
(0.54) (0.27) 

Percentage impact -23% -15% 
Notes: Each impact category represents a separate estimation. “Percentage impact” 
refers to  the ratio of average treatment effect and the mean value of the control group, 
indicating the percentage difference, between control and treatment groups, of which is 
due to the fires. The units for each of the estimates are MgC per ha. The indicators for 
statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 

 

grasslands. Though this is simply a speculative possibility, as these estimations cannot decipher such a 
relation causally. Ultimately, if (I) and (II) explain what happened in the long-term, these findings 
provide a quantitative account of how it happened, which paints a richer picture. That being said, the 
ecological progression of the burnt areas observed follow lines which are both sensible and supported 
by the literature. 

5.3. Impact on Carbon Sequestration 

5.3.1. Biomass Carbon Density 

As an indicator of sequestered carbon, impact on biomass carbon density is crucial for understanding 
the ecological impact of wildfires. Since our matching strategy gives temporal dynamics of land use, 
covering both pre- and post-treatment times, we can exploit this setting to estimate impact on other 
indicators. Instituting this strategy on biomass carbon, Table 6 provides estimates for the impact of 
fires on aboveground (AGBC) and belowground biomass carbon density (BGBC). As expected, the 
largest impact is on forests, on both accounts, with 32% and 18% decreases due to wildfires 
respectively in 2010, on average. Combining the above and belowground total counterfactual carbon 
stock (through outcome means of Table 7), we can see that the total decrease is roughly 28%. This 
means after 10 years, more than a quarter of the carbon that would have been stored had wildfires not 
happened, is still lost. This sums to a total of 12.86 MgC per ha. This represents the total amount of 
carbon per hectare that would have to be compensated in order for the effect of wildfires to be 
nullified. 

 A figure like 28% already indicates long-lasting fire-damage however, it is important to 
remember that even in 2012, presence of forests decreased by 65% due to forests on average, while 
being replaced largely by vegetation such as grasslands and shrubs. There is a slight conflict here. In 
Europe’s temperate climates, grasslands typically have around 10% as much carbon biomass density as 
forests (Watson et al., 2000). Therefore, carbon density only decreasing by 28%, while almost two 
thirds of the forests have disappeared, seems very unlikely, and indicates an underestimation. As 
discussed before, the methodological and technological issues contribute significantly here. Therefore, 
the 
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Table 7 ― The covariate balance and estimation details on specifications (AGBC) and (BGBC).  

  Forests   All Land  
 (AGBC) (BGBC) (AGBC) (BGBC) 
Observations Raw Matched Raw Matched Raw Matched Raw Matched 

Total 91,985 183,970 92,191 184,382 209,246 418,492 209,754 419,508 
Treated 2,895 91,985 2,903 92,191 6,860 209,246 6,874 209,754 
Control 89,090 91,985 89,288 92,191 202,386 209,246 202,880 209,754 

Standardized Differences  Raw Matched Raw Matched Raw Matched  Raw Matched 
Easting 0.27 -0.00090 0.27 -0.00090 0.10 -0.00091 0.10 -0.00091 
Northing -0.35 0.016 -0.35 0.017 -0.01 0.0040 -0.01 0.0040 

Variance ratio Raw Matched Raw Matched Raw Matched Raw Matched 
Easting 1.14 0.99 1.14 0.99 1.02 0.99 1.02 0.99 
Northing 0.68 0.98 0.68 0.98 0.70 1.04 0.70 1.04 

 Treatment Control Treatment Control Treatment Control Treatment Control 
Outcome Means 19.85 33.42 9.53 12.46 17.62 25.35 9.97 11.47 

Notes: Each category represents the share percentage of land group to which their pixels belong. Thus, the 
outcome means for the categories sum up to 1, barring approximations used for reporting, for each group. 

 

results found here should represent a lower bound for the true impact. Studies such as Ekinci and 
Kavdır (2005), has found the impact of fires on overall soil organic carbon to be close to 60% lower for 
burnt forests in Mediterranean climate, after 8 years. Hence, it is highly unlikely that total impact 
belowground would be only a drop of 18%. While comparable long-term studies on live biomass 
carbon density are rare to find, it is similarly unlikely that a drop of more than 60% of forests would 
only lead to roughly 30% causal differential between the groups. 

 The effects on total land are slightly smaller in magnitude, but nevertheless equally significant. 
Since forests are a main driver of biomass carbon storage in Europe, impact on all land is likely also 
driven by impact on forests (Watson et al., 2000). The outcome means similarly show forests to have 
greater density in either dimension. Though since we did not estimate each category of land separately, 
these are technically speculation, in this context. That being said, the results regarding impact on all 
land are reflections of impact on forests, albeit to a lesser degree, with 7.52 MgC per ha lost in terms of 
carbon density, cumulatively. 

5.3.2. Net Primary Productivity 

Initially, one would expect the impact on NPP to be significantly negative, similar to the biomass 
carbon density. However, the trends on Fig. 3 hinted that this it could also change directions if the 
reason why gap closes later is partly due to fires. Fig. 6 illustrates this progression. While we see a 
modest decrease of roughly 4%, after about 12 years, there starts to be a relative recovery period. This 
effect is particularly pronounced with all land, likely due to its inclusion of non-forest vegetation, 
which tends to reach its productivity climax much earlier than forests. We can also see perhaps a hint 
of why past consensus had thought that forest fires were only a concern in the short term. As 
mentioned previously, impact on carbon sequestration is also done through vegetation indices and 
measures of primary production. However, these are measures of “flow” in sequestration. While they 
are indicative of changes in the “stock” variable that is carbon density, the dynamics could lead to 
entirely different conclusions. By the measures of NPP, effects of forest fires seem to lose significance 
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Fig. 6 ― Impact of fires on net primary productivity. 

 

Notes: Average treatment effects indicate the difference in mean share between the two groups, on a scale 
of 0 to 1, of which are due to fires. Error bars for average treatment effects indicate the associated Abadie-
Imbens standard errors. 

within 3 years, having negligible impact for the next 9. The true context becomes clearer after a longer-
term analysis, or release of direct measures of carbon density data, such as Spawn et al. (2020). With 
imperfect remote sensing measures, verification via field surveys were used to fill this gap specifically. 

 Table 8 generalizes the NPP progression by estimating the impact on total average 
productivity. The impact on forests overall is insignificant, possibly since more than half the years 
show either insignificant, or negative impact (Specific estimation results could be found in the 

Table 8 ― Impact of fires on average NPP of forests and all land, from 2000 to 2020. 
  Impact on Forests   Impact on All Land  

ATE 
0.051 0.26*** 

(0.103) (0.077) 

Percentage impact 0.3% 1.8% 
Observations Raw Matched Raw Matched 

Total 91,494 182,988 208,301 416,602 
Treated 2,886 91,494 6,816 208,301 
Control 88,608 91,494 201,485 208,301 

Standardized differences Raw Matched Raw Matched 
Easting 0.27 -0.00086 0.099 -0.00088 
Northing -0.35 0.016 -0.017 0.0040 

Variance ratio Raw Matched Raw Matched 
Easting 1.14 0.99 1.021 1.00 
Northing 0.68 0.98 0.71 1.042 

 Treatment Control Treatment Control 
Outcome means 13.63 15.44 14.14 14.84 

Notes: Each impact category represents a separate estimation. “Percentage impact” refers to  
the ratio of average treatment effect and the mean value of the control group, indicating the 
percentage difference, between control and treatment groups, of which is due to the fires. 
ATE units are gC per m2. The indicators for statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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Appendix). Estimation on all land, on the other hand, shows direct positive effect. Though it is also 
important to notice how small the impact is in terms of percentage: 1.8%. This means over the course 
of 20 years, roughly 0.26 gC per m2, or in more conventional terms, 0.96 MgC per ha have been 
captured after fires.  

 To sum, it is clear that forest fires have had negligible on forest productivity, on average, with 
an upward directed, slope, indicating positive impact in the long run; the total land has benefitted 
modestly from the first regarding productivity. The overall positive effect seems to be continuing even 
after 20 years for both estimations. 

6. Discussion 

6.1. Connecting The Impacts 

In line with findings of prior research, the fires of Europe indeed significantly change the ecological 
demography of the plant-life in a persisting manner. However, unlike the 50% over 10 years which 
Savage and Mast (2005) had found for US, the impact on European forests is quite larger with over 
60%, after almost twice the period of time. This could be due to the Mediterranean basin being prone 
to high severity fires (Caon et al., 2014). Considering these areas are largely replaced by vegetation 
associated with significantly lower biomass such as grasslands and shrubs, it is then not surprising that 
total biomass carbon density was affected by almost 13 MgC per ha. The changes in the primary 
productivity at first might seem contradictory with the other findings. As the data indicates that the 
negative effect on primary productivity vanishes in 3 years, and if anything, becomes positive going 
forward. However, studies such as Kashian et al. (2006), Goulden et al. (2011) and He et al. (2012) 
repeatedly find that younger trees tend to be associated with greater NPP: despite their comparatively 
low ability to store carbon due to their much lower biomass, their rapid growth warrants much more 
efficient photosynthetic activities. Therefore implicitly, this confirms the drop in aboveground biomass 
carbon among forests. Even though as far as land use is concerned, we are still looking at forests, ones 
in the treatment group are very likely to be much younger trees, as they store much less carbon, and 
quickly recover to the extent that total impact of wildfires induce a positive impact on these forests. 

 This points us in the direction of a relative recovery. In the sense that parts of forests have 
recovered, but there is still a carbon-stock differential which persists. The amount of carbon stored in 
forests due to rapid increase of NPP, in comparison is negligible, in twice the period of time. While 
with the aforementioned availability of newer maps could indicate further recovery in the longer term, 
younger forests do not show realistic capacity to close the gap as carbon sinks anytime soon.  

 Some of the conceptual models for fire impact based on case studies in the past had estimated 
that full recovery of even light fires can take up to a century (Cochrane and Schulze, 1999). While 
mostly speculative at the time, our findings support the potential that indeed, this might be the case, 
and the descriptor “long-term” used in this paper might be too short for observing convergence 
regarding both the level effect induced by the initial fire damage on forests, and the negative growth 
effect regarding the sequestration capacity of the degraded vegetation. 

6.2. Economics Costs 

6.2.1. Social Cost of Carbon 

Though the information presented so far could be misconstrued as only being ecological, there are 
direct, long-term economic impacts associated with our findings. One dimension of this impact is the 
cost of carbon storage itself. The most appropriate literature associated with quantifying the cost of 
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GHG emissions utilize the concept of Social Cost of Carbon (SCC). This perspective of seeing 
emissions as a fiscal issue allows to consider wildfires as an exogenous financial shock in the form of a 
loan taken, with an associated interest rate. As this loan does not have a due date, the longer it is not 
paid, the higher the cost. 

 The estimations on SCC range from $20 per ton of CO2 in 2021-2030 period (Fankhauser, 
1994), which is widely regarded to be a conservative estimate, up to $1,550 per ton of CO2 in 2007 USD 
(Ackerman and Stanton, 2012). As such, it is possible to estimate a range of direct monetary cost on 
the impact on forests. Though it is important to note that these calculations are generally criticized for 
oversimplifying the true costs (e.g. Neumayer, 2000). McKinsey & Company (2009), also provides 
estimates of marginal abatement cost, based on the scenario where atmospheric CO2-equivalent 
concentration peaks at 480 ppm in 2060’s, before declining. This cost is placed somewhere between 
$90 and $150 in 2007 USD, by 2030. Table 9 provides the estimates for each of the aforementioned 
estimations, as well as estimates of one more commonly used model by Interagency Working Group 
(2010). Despite the already high estimates for a single year of wildfires, ranging from $111 million to 
$5.95 billion, it is important to remind that these figures are not constant over time. Ackerman and 
Stanton (2012)’s first estimate for the worst-case scenario of high-severity, high damages, and low 
discount rate is only for 2010. Meaning, the costs which needs to be incurred by this given year in 
order to compensate the loss of carbon captured. Ceteris peribus, in 2050, this estimate increases by 
almost 60%, as the damages associated with the released, yet uncaptured carbon rise. On the other 
hand, it should be note that these estimates are highly model dependent, different models consider 
different aspects of carbon loss, which are valued differently, albeit with scientifically compliant 
methods. Though Mediterranean climates are likely to be on the worse end of the parameter 
calibration if region-specific estimates were to be provided. These figures are ultimately to give a 
general idea of the scale of damage being done, by expressing it in monetary terms. 

6.2.2. Cost of Biodiversity Offsetting 

Outside of the direct cost through SCC, there are non-monetary, yet nevertheless economic costs 
associated with lower rates of carbon sequestration. Costs associated with supply constraints are of 
relevance here. Sonter et al. (2020) mentions the lack of land for offsetting: due to lack of available land 
for achieving NNL of biodiversity, none of the cases they have studied at a multinational scale, had 
succeeded. Even post compensation, selective institutions of NNL policies fail to slow the biodiversity 
declines. Naturally, the less productive a land gets in terms of carbon sequestration (e.g. due to fire 
damage), the more land will be needed to reach the associated minimum requirements. Lack of 
available land can also lead to increased competition: Calvet et al. (2019) finds that offset policies can 
induce social conflicts and competition among farmers, when large parts of land is occupied by 
agricultural purposes, such as France, with 51% of its total area denoted to be under cultivation. Once 
again, this competition effect will have direct economic costs associated. Though this impact can be 
evaluated much more accurately through Nature Map’s biodiversity indicators, once released (IIASA 
et al., 2020), our findings on the share of forests lost due to fires, the loss of sequestration, as well as 
literature on the devastating effects of wildfires on biodiversity (e.g. Letnic et al., 2005; Kodandapani et 
al., 2008; Pastro et al., 2011) can still give us some idea on the matter. It is thus safe to say that these 
findings alone warrant a conversation on the economic dynamics and long-term viability of offset 
policies in, particularly in the Mediterranean basin, as climate change effects intensify. Without proper 
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fire management and prevention strategies, biodiversity offsetting will be less and less feasible in 
countries like Portugal or Italy. 

6.2.3. Cost of Irreversible Ecological Damage 

Tucker et al. (2020), in describing the most important, common, yet uncompensated problems 
regarding Biodiversity and Ecosystem Services (BES), mentions the “limitations on ecological 
feasibility” of restoring ecosystems. Denoting that only the simple, and low-complexity ecosystems can 
be fully restored. Anthropogenic ecosystems such as urban vegetation are also provided as example, 
but as for the rest, restoration is argued to only be partially feasible. This is because “their biodiversity 
and services are the result of millions of years of complex biophysical interactions that are not fully 
understood, measurable or replicable.” The wildfires which our study regards, categorically exclude 
“simpler” ecosystems such as urban greenery, or damaged farmland. As such, most of the fire impact 
we have estimated fall into the latter category for partial restoration. This presents an important reason 
why there are other, difficult to measure losses associated with fire damage, and looking at the forest 
types and sequestration capacity of forests likely will not be enough to account for them. 

 Each one of these costs, environmental, monetary, or otherwise, point to the necessity of better 
fire management strategies. The severity as well as the regional scope of our findings, combined with 
the costs and challenges associates with implementation of NNL policies, clearly stress the importance 
of thorough preventative measures regarding wildfires and P&R strategies for forests. 

6.3. Policy Implications 

With the importance that natural preservation and restoration (P&R) strategies represent for 
European countries going forward, and NNL being seen as a necessary minimum achievement, (EC, 
2020),  one of the primary implications of our findings regard long-term economic gains associated 
with preservation of nature. More than one quarter of the forests failing to measurably recover after 18 
years of a fire suggests that in order for P&R strategies to succeed as intended, these long-term affects 
need serious consideration. As pointed out by other natural research done on Mediterranean countries 
(e.g. Mateus & Fernandes, 2014; Molina-Terrén et al., 2019), with the increasing effects of climate 

Table 9 ― Social Cost of Carbon from wildfires of 2000, based on various estimates.   

 Source of SSC Estimates 

SSC Cost 
Fankhauser 

(1994) 
M&C (2009): 

Low 
M&C  (2009): 

High 
IWG (2010): 

DICE avg. 
A&S (2012): 

Worst scenario 

By 2010 ― ― ― 
$144,810,003 

($28) 
$4,943,326,854 

($892) 

By 2030 
$110,836,925 

($20)a 

$498,766,162 
($90) 

$831,276,937 
($150) 

― ― 

By 2050 ― ― ― 
$330,994,293 

($64) 
$5,947,553,705 

($1,550) 

Notes: Associated marginal costs are provided in parentheses and expressed in 2007 USD. The estimates are 
fond by converting per hectare estimates of carbon loss to total MgC loss using pixel size and amount, then, 
the loss is converted from carbon to CO2 (as done in Breisinger, 2012 or EIB, 2020). Each estimates is then 
multiplied by the SSC estimate of the given literature. 
a: Not expressed in 2007 USD, due to the author not providing a basis year for the dollar value of their 
estimate. 
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change on severity and frequency of fires, fire management strategies have to play a stronger role in 
adaptation. This adaptation is due partly due to the fact that Mediterranean climates will be affected 
the most severely, but also partly due to contemporary policy framework, which is considered either 
inadvertently contributive to, or ineffective in prevention of, forest fires. To understand why the 
institutional and structural factors is particularly important, a deeper perspective should be in order. 

6.3.1. Forest Management 

In European counties, in the Mediterranean region in particular, there forest management policies 
have had multiple institutional issues, ranging from conflicts of interest to negligence. Lovreglio et al. 
(2010) identifies policies regarding seasonal forest workers as an exacerbating factor for voluntary 
forest fires in Southern Italy. These policies were argued to incentivize the usage of voluntary fires as 
an instrument to “force or maintain” seasonal employment. For Portugal, Mateus & Fernandes (2014) 
point to political and institutional factors behind persistent wildfires, which refers to how inconsistent 
and reactionary the government responses have been prior to the 2003 and 2005 wildfire crises. Even 
after these crises, authors find that Portuguese Forest Service as well as the National Fire Fighting 
Service, has continued to go through copious structural changes. These changes are identified as clear 
signals showing a “lack of understanding” of its role by policy makers. For a broader scale analysis, 
Molina-Terrén et al. (2019) look at Spain, Portugal, Greece, and Italy in the context forest fires and 
associated fatalities. Primary aspect authors found to have been lacking is, expectedly, effective 
prevention policies. Authors recommend an in-depth revision of the prevention policies, particularly 
regarding prevention planning in urban areas. These institutional factors, having persisted to this day, 
present a growing issue of insufficient adaptation and unpreparedness for wildfires. As a consequence, 
the worse the problem gets, it will be all the harder for the effects on forests to be mitigated. The short-
term damage caused due to impact on biodiversity, and the long-term damage due to impact on 
carbon sequestration will intensify. 

 However, remedy is likely not to come from a centralized body. Continent-wide analyses such 
as Lazdinis et al. (2019) point out that European forest management is too polycentric for EU-level 
forest management policies to be feasible or practical. Therefore, a top-down enforcement for 
overcoming regional, institutional issues are difficult to implement, even become harder to ensure, and 
likely not to be optimal due to “EU-level steering” of priorities. Instead, they offer that sustainable 
forest management can be done by exploiting the diversity of regional of both governance and ecology 
by building a more localized approach. Therefore, in terms of the issues regarding local institutional 
problems and economic conflicts of interests, our findings could go to exemplify how purposeful forest 
fires might have much more costly drawbacks than once thought. With hundreds of millions, if not 
billions of dollars’ worth of long-term costs incurred, seasonal employment becomes a negligible plus 
in the short-term. Further, the competition effects intensified by wildfires will prevent nations from 
being able meet their nationally determined contribution targets, as per their commitments under 
Paris Agreement. Each of these points build a case incentivizing local actors to prioritize the primary 
purpose of forest management policies: actually managing forests. 

6.3.2. Accounting for Climate Change Action 

Both Paris Agreement and the Kyoto Protocol has been widely criticized for their inadequate forest 
land use, land use change, and forestry (LULUCF) related emissions. Initially, the Kyoto Protocol did 
not provide and rules on how LULUCF emissions should be integrated into the overall accounting 
system proposed (Krug, 2018). Even within this system, natural disturbances could be excluded from 
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accounting anyways (Johns, 2020). Even after deliberations which determined that certain 
disturbances should be considered, there were accounting loopholes which allowed for exclusions of 
emissions accounting for fires in unmanaged land, or the drafted force majeure defense (Fry, 2007; 
LRI, 2010). Force majeure defense in particular, which referred to “unforeseen or irresistible events” 
was asked by non-governmental organizations to be deleted because it legally provides means by which 
countries can avoid their reduction obligations. Natural disturbances could be discounted wholesale 
under this defense. 

 Paris Agreement has also been noted not to have specific rules on how LULUCF emissions 
should be accounted for or responded to. These were instead guidelines which encouraged countries to 
set nationally determined contributions, with no definitional direction on what LULUCF categories, 
activities or pools should be accounted, or how, or through which methods (Krug, 2018). While there 
are certain political and economic interests (particularly in conflict between European and continental 
American nations) which puts some of the deliberations into a deadlock (Fry, 2011), in the context of 
wildfires, this is also due to the consideration that such natural disturbances are negligible in effect and 
difficult to quantify. Evidence shown in this manuscript not only contributes to the already growing 
literature showing these effects are not negligible, but also provides the first evidence that they can be 
accounted at the international level.  

 As UNFCCC (2019) specifies for Conference of the Parties (COP24), regarding the accounting 
methods for LULUCF related emissions, that any such endeavors on considering the emissions on 
natural disturbances be compliant with the IPCC guidelines. It is useful then, that the revision of the 
2006 guidelines in 2019 provided a much-needed emphasis on wildfire emissions accounting (Johns, 
2020). However, a standardized system of accounting for long-term impacts still remains. In this sense, 
one clear direction for accounting and reduction policies would involve a deliberation in favor of more 
standardized, and unambiguous methods for reporting on the impacts of forest fires. The more 
quantitative evidence is found regarding the persistent effects of fire-damage, the more incentive there 
will be for considering them in more rigid ways which are free of contextual loopholes. 

 

7. Model Consistency 

Given the comprehensive discussion on the baseline model, central results, and the implications 
thereof, there are secondary technical details which could be useful to exhaust in ensuring the validity 
of our approach. These assumptions are still inherent to matching and to the conceptual approach we 
are taking, but they are of lesser importance in terms of the potential issues they might represent for 
the model. There are also decisions on model parameters, which have to be taken into account for a 
robust procedure. This section provides deeper investigation into each of these elements. 

7.1. Overlap 

Second key assumption regards the overlap of control and treatment groups. It can be viewed in the 
context of this study as the assumption that given the covariates, any observed pixel has a non-zero 
and non-total probability of being treated:  

1 > Pr (𝑇௝, బ்
= 1|𝑋௝) > 0 

 Therefore, we would like to make sure that the controls and the treatments included, in terms 
of their covariate distributions have an overlapping “region” within which the observations can be 
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reasonably argued to have the possibility of being treated. For the purposes of this study’s baseline 
specification, we can consider the overlapping region to correspond to a geographic region with 
respect to strictly the Easting and Northing1. Any control or treatment observation outside of this area 
we would consider as violating the overlap assumption. For this study, given the estimation 
specifications, we exclude any observation which is found to violate the overlap assumption, 
iteratively, until all observations are valid in this respect. 

 A more systematic way in which overlap assumption is assisted, has to do with the brief 
discussion on the spatial perimeters of the control group, given in section 3.3. Given, the choice of the 
10 km perimeter is partly due to the computational intensity of the estimation, as it still allows for 
exact matching to be done with two matches, while estimations still completing in a reasonable time 
frame. But it is also important to note that after a certain distance it is difficult to argue that the pixels 
of the control group are comparably similar to the treatment pixels, in the first place. Though CLC 
inventory has 44 classes regarding land use, each of them are nevertheless broad categories and it is not 
very probable to argue that the particular genus of broad-leaved forests in a Mediterranean country 
would have comparable growth patterns as one from Northern European country. Therefore, even 
without a treatment, such two pixels might have shown significantly different signs of development. 
Within this unaccounted range of variability, the similarity of vegetation within local ecosystems as 
imposed by the outer perimeter will ensure similarity of unobserved characteristics.  

7.2. Recurrence of Fires 

Another important aspect to discuss regarding the findings is the possibility that when looking at 2018 
for the impact of fires on forests of 2000, we are overlooking fires on some of these forests which 
repeatedly occur between 2000 and 2018. In order to better explore this possibility, firstly, we explore 
the percentage share of burnt areas that the year 2000 has in common with future observed years. 
Table 10 provides the breakdown of “brunt” pixels of 2000, which are repeatedly observed as burned 
areas in 2006, 2012, and 2018. The results never exceed 2.53%, and on average less than 2% of the plots 
burned in 2000 continue to be burnt in following years. Table also takes intersections on these years, to 
see pixels which always remain as burned areas. This rate is even smaller, where only 0.51% of the total 
burned regions. This translates to less than 10 km2 in terms of total surface area, in the entirety of the 
pan-European region. Clearly, this is a very small area, but nevertheless, we can also re-estimate the 
baseline model with any pixel which was also burned in later years, excluded. 

 
1 Conventionally latitudes and longitudes are used to refer to the location of a specific point on a map. However, CLC data uses EPSG: 3035 
coordinate reference system (CRS), which is a cartesian, 2D, grid-based CRS. Under these conventions, the coordinates have the spatial unit 
of meters, the X-axis is referred to as “Easting”, while Y-axis is referred to as “Northing”. 

 

Table 10 ― Recurrence of fires of 2000 in later years. 

Pixels burnt in years Intersection  Pixels burnt in years Intersection 

2000 ∩ 2006 1.30%  2000 ∩ 2006 ∩ 2012 0.63% 
     

2000 ∩ 2012 2.53%  2000 ∩ 2006 ∩ 2018 0.51% 

     

2000 ∩ 2018 1.76%  2000 ∩ 2006 ∩ 2012 ∩ 2018 0.51% 

Notes: Intersection implies a pixel is burnt in each of the given years. 



29 
 

7.3. Temporal Changes & Disaggregation of Forests 

There are multiple ways to observe how burnt land transforms over time. Fig. 6 visualizes two possible 
algorithms to examine how land use classification of a pixel can change between observations. Each 
method has its own shortcomings associated. The “naïve” approach will recount a given pixel of the 
same type repeatedly, so long as it used to be a burnt region and is not anymore, which will cause areas 
that repeatedly change to be underrepresented, in relation. The “first-differences” approach on the 
other hand, focuses exclusively on dynamism, and as such, it will count even burnt pixels, so long as 
they were a different sub-class in the period prior (given that the pixel was also burnt in the initial 
period). However, if forest fires are to be a significant problem, with long-term negative impacts, as 
described by Bowd et al. (2019), there should be some indicative patterns emerging despite these 
shortcomings. 

 In order to further assess long-term effects of fire damage on land use, Table 11 provides the 
implementation of both algorithms mentioned, for years 1990 and 2000. This way we can also see 
evolution of “burnt” pixels after 28 years, albeit not through a causal lens, of course. Nevertheless, in 
either case, with either method, it is evident that an overwhelming majority of the regions do not 
become any type of forest. Considering that on average, roughly a quarter of the pixels have one of the 
forest classes associated, burnt regions, even after 28 years, fail to recover to a representative degree. 
Even under the best estimates, only about 14% of the burnt regions manage to become forests, and at 
worst, it is less than 1%. Mixed forests seem to show the most recovery for both 1990 and 2000. While 
the discrepancy between naïve and first-differences approaches of broad-leaved forests indicate that to 
the extent that they recover, they do so early, and not change much recovery happens in the long term. 
Overall, First-differences approach seems to find much less share of forests over time. This is to be 
expected, as once a region recovers enough for forests to emerge; they are likely to stay, over time, 
unless they burn again. This means first-differences will simply count these regions once, when they 
first emerge, and discount them the next period, and the share will fall again. In general, these results 
support our findings, as well as literature on post-fire regeneration, in regard to the lackluster process 
of recovery. The negligible recovery on disaggregated categories further substantiates the results of the 
robustness checks for 2006 and 2012. 

Fig. 6 ― Visual examples of how changes in burnt areas can be accounted. Each box represents a pixel, each 
color refers to a different sub-class of land, and dark gray ones, specifically, are the “Burnt areas”. Both 
algorithms first restrict the sample to geographical locations of burnt areas of the initial year. Following this, 
naïve approach will simply compare the initial year of observation (e.g. burnt pixels of 2000) and compare them 
to pixels of the following observations at the same geographical location. If the new region is not burnt, it will be 
counted as having changed. First-differences approach on the other hand, as its name suggests, will instead 
compare each observation to its immediate successor. This means if a given pixel has changed compared to its 
previous observation, it will be counted as having changed. 

Naïve Approach First-Differences Approach 

 



30 
 

8. Robustness Checks 

If our baseline estimation is not capturing a spurious relationship, different parameter specifications of 
the model, should still produce output which conforms to past literature and intuition. The following 
list provides a detailed account of the robustness checks performed for this purpose of validation:  

8.1. Different Radii  

Table 13 shows the results of the baseline model, (I), with differing inner and outer perimeters. (V) 
checks whether we can relax the assumption of regions being indirectly affected by the fires, and scales 
the inner radius to 1 km The balance seems unaffected if not marginally better for Easting and 
marginally worse for Northing. The central results are almost identical, with forests being affected to 
the same exact degree, and other vegetation losing some magnitude. The category for others also seems 
to have lost some precision with 5%, but otherwise, the model shows evidence in the same direction. 
With (VI) we try to see if extending the inner perimeter to 5 km would significantly change the results, 
since if it does, this could mean that even at 3 km we have a violation of the models’ basic assumptions. 
However, this is not the case. Once again regarding balance, the covariates seem to be similarly 
distributed. The results are also in line with the baseline model. Agricultural areas as well as “others” 
lose some precision, and interestingly we gain precision with burnt regions at 1%. Though the 
magnitude show that we are looking at a difference of 0.55% increased presence of fires, on average, 
compared to the control group. So not very impactful. But otherwise, impact on both forests and 
vegetation remain significant and almost same in magnitude. Finally, with (VIII), we extend the outer 
perimeter to 20 km (while inner perimeter is left at 3 km), to assess if increasing number of controls 
would provide significantly better accuracy, at the exponential cost of computation time. The covariate 
balance once again seems to be better for Easting, but worse for Northing, so we do not gain much use 
in terms of representativeness. The impact estimates, on the other hand, are almost identical to (VI). 
These findings clearly demonstrate our model is robust to various geospatial ranges of selection 
regarding control groups. 

Table 11 ― Temporal class changes of burnt areas in 1990 and 2000. 
  Initial Year: 1990   Initial Year: 2000  

 Broad-
Leaved Coniferous Mixed 

Total 
Non-Forest 

Broad-
Leaved Coniferous Mixed 

Total 
Non-Forest 

Naïve Approach: 
        

2000 0.15% 0.53% 0.15% 99.17% - - - - 
2006 0.24% 0.00% 1.54% 98.22% 2.09% 0.29% 5.31% 92.31% 
2012 1.92% 0.67% 8.30% 89.11% 2.99% 0.32% 5.58% 91.11% 
2018 1.95% 0.69% 7.26% 90.10% 3.13% 0.34% 5.39% 91.14% 

First-Differences Approach:        
2000 0.15% 0.53% 0.15% 99.17% - - - - 
2006 0.39% 0.00% 2.84% 96.77% 2.09% 0.29% 5.31% 92.31% 
2012 3.75% 2.27% 8.19% 85.79% 0.29% 0.00% 7.44% 92.27% 
2018 0.00% 0.55% 0.00% 99.45% 0.03% 6.19% 1.07% 92.70% 

Notes: Each category represents share of the given class in relation to the total land use. Broad-leaved 
forests, coniferous forests and mixed forests are the three “Tier 4” classes in the CLC inventory which 
compose the general category of forests. 
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Table 12 ― Impact of fires on land use after 18 years, using several radii. 
Impact on Forests (V) (VI) (VII) 

ATE 
-0.27*** -0.28*** -0.29*** 
(0.012) (0.012) (0.012) 

Percentage impact -63% -63% -65% 
Impact on Artificial Surfaces (V) (VI) (VII) 

ATE 
-0.0013 -0.0028 -0.0028 
(0.0029) (0.0029) (0.0033) 

Percentage impact -15% -33% -37% 

Impact on Agricultural Areas (V) (VI) (VII) 

ATE 
-0.017** -0.020** -0.018* 
(0.0071) (0.0087) (0.0097) 

Percentage impact -29% -30% -%25 
Impact on Natural Grasslands, Moors, and 
Heathland (V) (VI) (VII) 

ATE 
0.052*** 0.064*** 0.067*** 
(0.011) (0.012) (0.013) 

Percentage impact +31% +42% +45% 
Impact on Sclerophyllous XIegetation, 
Transitional Woodland-shrubs (V) (VI) (VII) 

ATE 
0.22*** 0.22*** 0.22*** 
(0.014) (0.015) (0.015) 

Percentage impact +70% +72% +74% 

Impact on Burnt Areas (V) (VI) (VII) 

ATE 
0.0018 0.0055*** 0.008*** 

(0.0018) (0.0018) (0.0022) 

Percentage impact +115% +149% +179% 
Impact on Other Categories of Land (V) (VI) (VII) 

ATE 0.017** 0.018** 0.017* 
(0.0073) (0.0085) (0.0093) 

Percentage impact +122% +126% +116% 
Notes: Each impact category represents a separate estimation. “Percentage impact” refers to  the ratio of average 
treatment effect and the mean value of the control group, indicating the percentage difference, between control and 
treatment groups, of which is due to the fires. Information on the observations and the group means are shared in 
Table 13. Specification (V) utilizes 1 km inner perimeter, and 10 km outer perimeter; (VI) utilizes 5 km inner, 10 
km outer perimeters; (VII) utilizes 3 km inner and 20 km outer perimeters. Abadie-Imbens robust standard errors 
are provided in parentheses. The indicators for statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 

 

8.2. Monte Carlo Simulations 

One other way to ensure robustness, could be through making sure the effects we have captured are 
not spurious to the extent that a subset of controls used as treatment group could also generate 
significant outcomes. To test this, we ran Monte Carlo tests, in which we randomly select a strict 
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subset of the controls, as a substitute for the treatment group, and test if our model produces any 
statistically significant results. Due to timing concerns and the computationally intense nature of our 
matching strategy, there were some limitations we had to conform to in order to make this test valid, 
yet nevertheless feasible. we ran 50 iterations, only with the “Forests” category, each 2,000 observations 
as the treated group, the rest of the controls being used as counterfactual. Table 15 shows the results of 
these permutations. Only 4 out of the 50 permutations were statistically significant. Out of these 4, 
only 1 of them was significant at 5%, the others at 10%. Furthermore, the magnitude of each of the 
significant effects were less than 10% of our findings. The percentage impact of the significant 
estimations are between -4% and 6%. 

Table 14 ― Coefficient results of Monte Carlo tests. 
Monte Carlo 

permutations: 1 through 10 11 through 20 21 through 30 31 through 40 41 through 50 

ATE 
-0.0026 -0.015 -0.0031 0.0047 -0.0047 
(0.011) (0.010) (0.0099) (0.010) (0.010) 

ATE 
0.013 -0.016 0.0026 0.0029 -0.0036 
(0.010) (0.011) (0.0099) (0.010) (0.010) 

ATE 
-0.014 0.020* -0.019* 0.0043 -0.0078 
(0.010) (0.011) (0.010) (0.0099) (0.010) 

ATE 
-0.0098 -0.010 -0.0002 0.0054 0.016 
(0.010) (0.011) (0.0097) (0.011) (0.0099) 

ATE 
0.015 0.0032 -0.013 -0.0034 0.011 
(0.010) (0.010) (0.011) (0.010) (0.010) 

ATE 
-0.0039 0.025** 0.015 0.0063 -0.010 
(0.0097) (0.011) (0.010) (0.010) (0.0095) 

ATE 
-0.0037 0.019* 0.0020 -0.0099 -0.0022 
(0.0096) (0.011) (0.010) (0.0099) (0.010) 

ATE 
-0.0086 -0.011 -0.00081 0.012 0.0011 
(0.010) (0.010) (0.011) (0.010) (0.010) 

ATE 
-0.0025 0.00068 0.018* -0.0044 -0.0065 
(0.010) (0.011) (0.010) (0.011) (0.010) 

ATE 
-0.00004 0.0041 0.0035 0.0019 -0.0054 
(0.010) (0.010) (0.010) (0.010) (0.011) 

  Minimum   Maximum  

Observations  Raw Matched   Raw Matched  

Total    485,382 970,764   505,367 1,010,734  
Treatment   1,819 485,382   1,862 505,367  
Control   483,563 483,563   503,506 503,506  

Notes: Average treatment effect estimations are strictly for the “forest” category. Observations are less than 
2,000 and varying due to the fact that some of them defy overlap assumption, and hence have to be excluded 
from the estimation. Further details on each estimation can be found in the Appendix. The indicators for 
statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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 While running 1000 tests, with each category of land use, with much larger number of 
observations, utilizing a greater coarser spatial resolution would provide much better case for our 
methodology, we believe this test still builds a strong case for the overall robustness of the approach. 

8.3. No Coordinate Covariates 

Past literature has an emphasis to use bordering regions of burnt plots for composing control groups, 
and the fact that we have a geospatial data makes this process very appealing. However, what would 

Table 16 ― Impact of fires on land use after 18 years, using only distance covariates. 
Impact on Forests (VIII) 

ATE 
-0.29*** 

(0.011) 

Percentage impact -66% 
Impact on Artificial Surfaces (VIII) 

ATE 
-0.0029 

(0.0038) 

Percentage impact -3.4% 

Impact on Agricultural Areas (VIII) 

ATE 
-0.00047** 
(0.0106) 

Percentage impact +0.76% 

Impact on Natural Grasslands, Moors, and Heathland (VIII) 

ATE 
0.104*** 
(0.0075) 

Percentage impact +64% 
Impact on Sclerophyllous Vegetation, Transitional Woodland-
shrubs (VIII) 

ATE 
0.16*** 

(0.015) 

Percentage impact +54% 

Impact on Burnt Areas (VIII) 

ATE 
0.0020 

(0.0020) 

Percentage impact +26% 
Impact on Other Categories of Land (VIII) 

ATE 0.020*** 
(0.0032) 

Percentage impact +147% 
Notes: Each impact category represents a separate estimation. “Percentage impact” 
refers to the ratio of average treatment effect and the mean value of the control group. 
Abadie-Imbens robust standard errors are provided in parentheses. The indicators for 
statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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happen if we only had other geographic factors based on distance, to match controls? Perhaps without 
accounting for geolocation, our estimations would fall short of accurately assessing the impact, which 
could cast doubt on the accuracy of our distance-based covariates, as they are also considered in the 
literature as predictors. Specification (VIII) of Table 15 addresses these concerns. In terms of both 
impact estimations, and the covariate balance, this model is almost identical to (VIII). In fact, the 
results of interest, forests, have the same magnitude and standard errors. Similar to the other 
robustness checks so far, the results are observably unaffected by exclusion of the geolocational 
information. It seems the distance-based covariates are also quite accurate in finding matches which 
are close to those of the treatment group. 

 One further implication here is that so long as exact pre-treatment matching provides a 
precondition selecting the controls, approaches driven by geospatial similarity or geographical 
similarity are both adequate in providing robust and globally balanced groups.  In this sense exact 
matching on past proved to be a strongly reliable means by which ecological counterfactuals could be 
assessed. Though as per initial discussion on (II), the covariate balance on geographical factor 
proximity proves to be less balanced. As such, the preference here would be in favor of (I) rather than 
(VIII) or (II). 

8.3. Different Number of Matches 

 In a nearest-neighbor matching model it is both important to make sure there are comparable 
counterfactuals for the treatment group, and that the bias this might generate is taken into account. As 
Stuart (2010) describes, higher number of matches would mean that we are able to involve more 
controls per treatment observation. This will increase the balance of the estimation, as we are able to 
construct better counterfactuals. However, this will come at the cost of increased bias. As the number 
of matches increase, the average quality of the matches will be inversely affected. For the purposes of 
our study, though maximum number of matches could go up to 6 control observations per one treated 
pixel, we have considered using two non-weighted matches per treated pixel. This both provides 
sufficient balance in the estimation while not allowing the bias to dictate the results, for our baseline 
model. As a form of robustness check, though, we also report estimations with one and three matches. 
This way, we can discuss the bias-variance trade-off in more detail, in context.  

 There is another aspect of the matching which we cannot control due to technical limitations: 
match replacement. In matching with replacement one control observation can be used as 
counterfactual for multiple treatment observations, ultimately allowing for better average quality for 
matches which will then decrease bias, at the cost of increased variance due to lower overall number of 
control observations used. Possibly the most important issue to consider for non-replacement, though, 
is that since once a control is matched, it cannot be used again, thus matching without replacement 
becomes dependent on the order in which controls and treatments are assigned (Smith & Todd, 2005). 
Within our technical limitations, matching with replacement was the only option. And even though in 
our particular case, we have an overabundance of controls, and as such non-replacement would likely 
not have become a big issue, this aspect of matching is nevertheless important to keep in mind. 

 In Table 16, given the baseline model, different number of matches were applied to the 
primary category of interest: forests. As per the former discussion on the bias-variance trade-off 
associated with the number of matches, if our model is strongly dependent the number of matches we 
use, we should see a difference of bias, and the covariate balance, in these results. Specification (IX) 
matches only one control per treatment observation, and compared to (I), the covariate matches are 
very similar. We are marginally closer to ideal values with Easting, and farther away with Northing. 
While the results are exactly the same in magnitude, though with larger standard errors. Specification 
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Table 16 ― Impact of fires on forests after 18 years, with different number of matches. 
Impact on Forests (IX) (X) 

ATE 
-0.27*** -0.28*** 
(0.012) (0.012) 

Percentage impact -63% -63% 
Observations Raw Matched Raw Matched 

Total 390,927 781,854 390,927 781,854 
Treated 6,874 390,927 6,874 390,927 
Control 384,053 390,927 384,053 390,927 

Standardized differences Raw Matched Raw Matched 
Easting 0.13 0.00017 0.13 0.00044 
Northing 0.055 -0.018 0.055 -0.016 

Variance ratio Raw Matched Raw Matched 
Easting 1.067 0.99 1.067 0.99 
Northing 0.71 1.088 0.71 1.075 

 Treatment Control Treatment Control 
Outcome means 0.12 0.44 0.12 0.44 
Number of matches 1 3 

Notes: Each impact category represents a separate estimation. “Percentage impact” refers to  
the ratio of average treatment effect and the mean value of the control group, indicating the 
percentage difference, between control and treatment groups, of which is due to the fires. The 
indicators for statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 

 

(X) on the other hand, uses 3 matches. The covariate balance is once again, almost identical, while the 
magnitude of the impact is slightly higher. The difference is small enough thar arguing this is the direct 
result of the bias induced as a result of increased number of matches would be difficult. Nevertheless, 
one thing is clear: the findings are also robust to changes in parameters regarding matching. 

9. Conclusions 

Until recently, effects of forest fires in the long-term had been considered negligible. They would be 
excluded categorically, later due to loopholes, and later still due to ambiguous guidelines (Fry, 2007; 
Krug, 2018). This was in part due to lack of quantitative, large-scale research on the lasting impacts of 
forest fires. Advancing technologies and measurement methods in the last few decades allowed an 
opportunity to estimate bio-physical factors in greater spatial and temporal coverage, despite some 
drawbacks in terms of limitations regarding data and methodology (Sajjad and Kumar, 2018). 

 Utilizing these modern tools, and instituting a robust matching strategy, we provide the first 
pan-European, and the first multinational estimates of the long-term impact of forest fires, from 2000 
to 2018. The first dimension regards impacts on land use, to obtain some perspective on the damage 
done on the ecological habitat directly. In multiple specifications of the model, we found the presence 
of forests to have declines by at least 61%, after 18 years, on average. These areas were primarily 
replaced by vegetation known to have much lower capacity to sequester carbon, such as grasslands and 
shrubs. Results are robust to alternative specifications of the model, the data, and several changes in 
model parameters. 



36 
 

 Secondly, exploiting the matching setting calibrated on pre-treatment data, we are able to 
assess the impact done on other ecological indicators, on any period of time. For the purposes of 
carbon sequestration, though not ideal, estimations were done on the best available data: biomass 
carbon density of the year 2010, and progression of NPP index from 2000 to 2020. The results confirm 
that a drastic drop in the captured carbon stock has occurred due to fires, at 28%, while even the 
forests which do show presence after fires, show signs of low capacity to sequester carbon, only re-
capturing about 2.1% of the carbon lost. Although the technical limitations strongly indicate that these 
estimates are underreport the severity of the true impact. 

 From an economic perspective, the monetary costs of abatement alone reach hundreds of 
millions of USD, while future total cost of no-action scenarios reaches almost 6 billion USD by 2050, 
for a single year of fires alone. Further considering the downward pressure forest fires have on 
resources used for climate action policies, the full range of implications of the severity of these findings 
diverse, for better or for worse. In this sense, our findings could serve to incentivize reprioritization of 
forest management strategies and goals, potentially open a way in which activities previously thought 
to be a net cost are seen as long-term economic benefits. From a macro-policy standpoint, these results 
emphasize the need for clearer and more directed accounting systems to be introduced for natural 
disturbances such as forest fires and means to account for long-term impacts.  
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Appendix 
1. Technical Information on Datasets 

 

Table A1 ― Raster data and shapefiles used in this study. 

Raster Data 

Name 
Original Coordinate 

Reference System 
Original 

Spatial Unit 
Original Pixel 
Dimensions 

Original Raster 
Dimensions 

Original 
Measurement Unit Year Source 

Aboveground 
Biomass Carbon 

EPSG:4326 - WGS 84 Degrees 0.0028 × 0.0028 
Latitude: 129,600 
Longitude: 52,201 

MgC per ha-1 2010 Spawn et al. (2020) 

Belowground 
Biomass Carbon 

EPSG:4326 - WGS 84 Degrees 0.0028 × 0.0028 
Latitude: 129,600 
Longitude: 52,201 

MgC per ha-1 2010 Spawn et al. (2020) 

CORINE Land 
Cover Inventory 

EPSG:3035 –  
ETRS89-extended 

Meters 100 × 100 
Latitude: 65,000 
Longitude: 46,000 

n/a 
1990; 2000; 

2006; 2012; 2018 
https://land.copernicus.eu/pan-

european/corine-land-cover  

Net Primary 
Productivity 

EPSG:53008 Meters 463.31 × 463.31 
Easting: 12,000 
Northing: 12,000 

gC per m2 [2000, 2020] Running and Zao (2021) 

Shapefile Data        

Name Storage Convetion 
Original Coordinate 

Reference System 
Original Spatial 

Unit Year Source 

NUTS II Regions ESRI 
EPSG:3035 –  

ETRS89-extended 
Meters 2021 

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-
data/administrative-units-statistical-units/nuts  

Mount Athos 
Autonomous State 

ESRI EPSG:2100 - GGRS87 Meters 2011 https://www.statistics.gr/digital-cartographical-data  

Notes: Regions of Kosovo and Bosnia and Herzegovina are technically not included in the NUTS II Regions provided by EU. These areas were included by extending the shapefile to 
them using the borders of surrounding NUTS II regions. Mount Athos was included by merging the two shapefiles. Though these procedures cause some inclusion issues around the 
borders, the regions of interest for this study were not affected. 
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Table A2 ― CLC class nomenclature and its association with category names used in thesis 
Color ID CLC Tier-4 Class Name Thesis Category Name 
  1 Continuous urban fabric Artificial surfaces 
  2 Discontinuous urban fabric 
  3 Industrial or commercial units 
  4 Road and rail networks and associated land 
  5 Port areas 
  6 Airports 
  7 Mineral extraction sites 
  8 Dump sites 
  9 Construction sites 
  10 Green urban areas 
  11 Sport and leisure facilities 
  12 Non-irrigated arable land Agricultural areas 
  13 Permanently irrigated land 
  14 Rice fields 
  15 Vineyards 
  16 Fruit trees and berry plantations 
  17 Olive groves 
  18 Pastures 
  19 Annual crops associated with permanent crops 
  20 Complex cultivation patterns 

  
21 Land principally occupied by agriculture with significant 

areas of natural vegetation 
  22 Agro-forestry areas 
  23 Broad-leaved forest Forests 
  24 Coniferous forest 
  25 Mixed forest 
  26 Natural grasslands Natural grasslands, moors, and 

heathland   27 Moors and heathland 
  28 Sclerophyllous vegetation Sclerophyllous vegetation, 

transitional woodland-shrub   29 Transitional woodland-shrub 
  30 Beaches dunes sands Other 
  31 Bare rocks 
  32 Sparsely vegetated areas 
  33 Burnt areas Burnt areas 
  34 Glaciers and perpetual snow Other 
  35 Inland marshes 
  36 Peat bogs 
  37 Salt marshes 
  38 Salines 
  39 Intertidal flats 
  40 Water courses 
  41 Water bodies 
  42 Coastal lagoons 
  43 Estuaries 
  44 Sea and ocean 

Notes: Except for the tier-class 33, “Burnt Areas”, any category IDs in rage [30, 44] are included in the same 
category: “Other”. The “NODATA” category with designated ID 48, is not considered. 
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Table A4 ― Estimation results and distribution means for the Monte Carlo robustness checks. 

Permutation ATE 
AI-Robust 

Std. Err. 
Treated 
Means 

Control 
Means Permutation ATE 

AI-Robust 
Std. Err 

Treated 
Means 

Control 
Means 

1 0.0026 0.011 0.46 0.45 26 0.015 0.011 0.45 0.46 
2   0.013 0.010 0.47 0.45 27 0.0020 0.010 0.47 0.46 
3 -0.014 0.010 0.45 0.46 28 -0.00081 0.010 0.47 0.46 
4 0.0098 0.010 0.46 0.46 29 0.018 0.011 0.46 0.46 
5    0.015 0.010 0.47 0.46 30 0.0035* 0.010 0.48 0.45 
6 0.0039 0.010 0.47 0.46 31 0.0047 0.010 0.46 0.46 
7 0.0037 0.010 0.45 0.45 32 0.0029 0.010 0.47 0.46 
8 0.0086 0.010 0.45 0.46 33 0.0043 0.010 0.47 0.46 
9 0.0025 0.010 0.47 0.46 34 0.0054 0.010 0.44 0.45 

10 0.000040 0.010 0.45 0.45 35 -0.0034 0.011 0.46 0.46 
11 -0.015 0.010 0.46 0.46 36 0.0063 0.010 0.46 0.45 
12 -0.016 0.011 0.45 0.46 37 -0.0099 0.010 0.46 0.45 
13 0.020* 0.011 0.48 0.46 38 0.012 0.010 0.46 0.45 
14 -0.010 0.011 0.44 0.45 39 -0.0044 0.010 0.47 0.46 
15 0.0032 0.010 0.47 0.46 40 0.0019 0.011 0.44 0.45 
16   0.025** 0.011 0.48 0.46 41 -0.0047 0.010 0.47 0.46 
17 0.019* 0.011 0.47 0.46 42 -0.0036 0.010 0.45 0.46 
18 0.011 0.010 0.44 0.46 43 -0.0078 0.010 0.46 0.46 
19   0.00068 0.011 0.48 0.45 44 0.016 0.010 0.44 0.46 
20 0.0041 0.010 0.46 0.45 45 0.011 0.010 0.46 0.46 
21 -0.0031 0.010 0.46 0.45 46 -0.010 0.010 0.47 0.45 
22   0.0026 0.010 0.45 0.46 47 -0.0022 0.0095 0.44 0.46 
23 0.019* 0.010 0.46 0.46 48 0.0011 0.010 0.48 0.46 
24   -0.00020 0.010 0.47 0.46 49 -0.0065 0.010 0.47 0.46 
25 -0.013 0.011 0.45 0.46 50 -0.0054 0.010 0.47 0.46 

Notes: Due to spacing concerns, Abadie-Imbens Robust standard errors are given to the right of ATE estimates. The 
indicators for statistical significance are as follows: *** for 1% significance; ** for 5% significance; * for 10% significance. 

 

Table A3 ― Dates of inclusion of each country covered by CLC Inventory 

Country Name 
Initial Year 
of Coverage Country Name 

Initial Year 
of Coverage Country Name 

Initial Year 
of Coverage 

Albania 2000 Greece 1990 Netherlands 1990 
Austria 1990 Hungary 1990 Norway 2000 
Belgium 1990 Iceland 2000 Poland 1990 
Bosnia & Herzegovina 2000 Ireland 1990 Portugal 1990 
Bulgaria 1990 Italy 1990 Romania 1990 
Croatia 1990 Kosovo 2000 Serbia 1990 
Cyprus 2000 Latvia 1990 Slovakia 1990 
Czechia 1990 Liechtenstein 1990 Slovenia 1990 
Denmark 1990 Lithuania 1990 Spain 1990 
Estonia 1990 Luxembourg 1990 Sweden 2000 
Finland 2000 Malta 1990 Switzerland 2000 
France 1990 Macedonia 2000 Turkey 1990 
Germany 1990 Montenegro 1990 United Kingdom 2000 
Notes: As our estimation requires exact matching on 1990 values, lack of available data for some countries in 
1990 causes our method to lose roughly 31% of our observations (from 10,118 to 7,017). 
 

2. Verbose Results 
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Table A5 ― Covariate balance and estimations details of the Monte Carlo robustness checks. 

Permutation 
No 

Total 
Raw 
Obs. 

Total 
Matched 

Obs. 

Treated 
Raw 
Obs. 

Treated 
Matched 

Obs. 

Control 
Raw 
Obs. 

Control 
Matched 

Obs. 

Easting 
Std. Diff. 

Raw 

Easting 
Std. Diff. 
Matched 

Easting 
Var. Ratio 

Raw 

Easting 
Var. Ratio 
Matched 

Northing 
Std. Diff. 

Raw 

Northing 
Std. Diff. 
Matched 

Northing 
Var. Ratio 

Raw 

Northing 
Var. Ratio 
Matched 

1 496,741 993,482 1,837 496,741 494,904 494,904 0.016 0.000033 1.04 1.00 0.014 0.00076 1.05 1.00 
2 495,853 991,706 1,829 495,853 494,024 494,024 0.028 0.00038 1.01 1.00 0.024 0.004 1.08 1.00 
3 496,738 993,476 1,842 496,738 494,896 494,896 0.033 -0.00027 1.02 1.00 0.018 -0.00033 1.08 0.99 
4 498,191 996,382 1,841 498,191 496,350 496,350 0.046 0.00025 1.05 1.00 0.027 0.004 1.07 0.99 
5 500,340 1,000,680 1,845 500,340 498,495 498,495 0.024 -0.00053 1.03 1.00 -0.0071 0.0033 1.04 0.99 
6 496,168 992,336 1,836 496,168 494,332 494,332 0.031 0.00042 1.02 1.00 0.018 0.0028 1.05 1.00 
7 493,745 987,490 1,830 493,745 491,915 491,915 0.0093 -0.00094 1.00 1.00 0.033 0.0062 1.04 0.99 
8 498,315 996,630 1,840 498,315 496,475 496,475 0.063 -0.00034 1.08 1.00 -0.019 0.0034 1.11 1.00 
9 497,743 995,486 1,851 497,743 495,892 495,892 0.057 0.00007 1.03 1.00 0.05 0.0058 1.11 0.99 

10 498,172 996,344 1,837 498,172 496,335 496,335 0.011 0.00018 1.05 1.00 0.03 0.0044 0.98 0.99 
11 497,236 994,472 1,844 497,236 495,392 495,392 0.069 -0.00009 1.08 1.00 0.022 0.0018 1.13 1.00 
12 496,301 992,602 1,833 496,301 494,468 494,468 0.019 -0.00052 0.99 1.00 0.057 0.0017 1.05 0.99 
13 490,922 981,844 1,839 490,922 489,083 489,083 0.059 0.000077 1.04 1.00 0.038 0.0017 1.07 0.99 
14 495,361 990,722 1,855 495,361 493,506 493,506 0.04 -0.00029 1.04 1.00 0.027 0.003 1.12 1.00 
15 495,896 991,792 1,831 495,896 494,065 494,065 0.039 0.000069 1.01 1.00 0.00063 -0.00025 1.11 1.00 
16 495,157 990,314 1,830 495,157 493,327 493,327 0.056 0.000016 1.08 1.00 0.017 0.0019 1.15 1.00 
17 500,428 1,000,856 1,844 500,428 498,584 498,584 0.081 -0.00026 1.08 1.00 -0.0089 0.00039 1.06 1.00 
18 497,152 994,304 1,843 497,152 495,309 495,309 0.026 0.00085 1.01 1.00 0.028 0.0043 1.08 0.99 
19 496,915 993,830 1,826 496,915 495,089 495,089 0.072 0.00095 1.05 1.00 0.0031 0.0011 1.12 1.00 
20 491,455 982,910 1,824 491,455 489,631 489,631 0.035 -0.0004 1.06 1.00 0.0073 0.0034 1.08 0.99 
21 497,278 994,556 1,842 497,278 495,436 495,436 0.059 0.000093 1.06 1.00 0.017 0.0055 1.11 1.00 
22 502,241 1,004,482 1,857 502,241 500,384 500,384 0.021 -0.00011 1.00 1.00 -0.0084 0.0029 1.08 1.00 
23 493,381 986,762 1,832 493,381 491,549 491,549 0.064 0.0001 1.06 1.00 -0.0038 0.0045 1.11 0.99 
24 502,430 1,004,860 1,849 502,430 500,581 500,581 0.023 -0.000068 1.04 1.00 0.046 0.004 1.05 0.99 
25 495,158 990,316 1,835 495,158 493,323 493,323 0.036 -0.00016 1.02 1.00 0.042 0.0024 1.03 1.00 
26 499,249 998,498 1,855 499,249 497,394 497,394 0.054 -0.00051 1.06 1.00 0.0033 0.00024 1.16 1.00 
27 500,146 1,000,292 1,853 500,146 498,293 498,293 0.032 0.000059 1.01 1.00 0.03 0.0026 1.07 1.00 
28 501,385 1,002,770 1,857 501,385 499,528 499,528 0.041 0.000091 1.02 1.00 -0.012 0.0012 1.05 0.99 
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Table A5 (cont.) ― Covariate balance and estimations details of the Monte Carlo robustness checks. 

Permutation 
No 

Total 
Raw 
Obs. 

Total 
Matched 

Obs. 

Treated 
Raw 
Obs. 

Treated 
Matched 

Obs. 

Control 
Raw 
Obs. 

Control 
Matched 

Obs. 

Easting 
Std. Diff. 

Raw 

Easting 
Std. Diff. 
Matched 

Easting 
Var. Ratio 

Raw 

Easting 
Var. Ratio 
Matched 

Northing 
Std. Diff. 

Raw 

Northing 
Std. Diff. 
Matched 

Northing 
Var. Ratio 

Raw 

Northing 
Var. Ratio 
Matched 

29 497,907 995,814 1,853 497,907 496,054 496,054 0.0046 0.00047 1.00 1.00 0.012 0.0059 1.08 1.00 
30 492,077 984,154 1,854 492,077 490,223 490,223 0.022 -0.00074 1.03 1.00 -0.015 0.0057 1.10 0.99 
31 494,925 989,850 1,859 494,925 493,066 493,066 0.034 0.0005 1.04 1.00 0.025 0.0048 1.08 1.00 
32 496,116 992,232 1,836 496,116 494,280 494,280 0.049 -0.001 1.05 1.00 0.018 0.0061 1.08 1.00 
33 496,055 992,110 1,824 496,055 494,231 494,231 0.048 -0.0004 1.05 1.00 0.027 0.00097 1.02 0.99 
34 502,778 1,005,556 1,855 502,778 500,923 500,923 0.028 0.00059 1.03 1.00 0.029 0.0007 1.03 1.00 
35 499,032 998,064 1,848 499,032 497,184 497,184 0.06 -0.00045 1.05 1.00 0.027 0.0016 1.03 1.00 
36 499,820 999,640 1,843 499,820 497,977 497,977 0.036 -0.00041 1.02 1.00 0.012 0.0045 1.11 1.00 
37 489,649 979,298 1,832 489,649 487,817 487,817 0.036 -0.00045 1.04 1.00 0.03 0.004 1.08 1.00 
38 501,683 1,003,366 1,852 501,683 499,831 499,831 0.041 -0.00011 1.05 1.00 0.037 0.0034 1.00 1.00 
39 500,086 1,000,172 1,862 500,086 498,224 498,224 -0.0097 -0.00024 0.98 1.00 0.027 0.0014 1.06 0.99 
40 500,578 1,001,156 1,839 500,578 498,739 498,739 0.049 0.00052 1.06 1.00 0.05 0.0084 1.10 0.99 
41 485,382 970,764 1,819 485,382 483,563 483,563 0.029 0.00072 1.05 1.00 0.03 0.0039 1.08 1.00 
42 489,596 979,192 1,826 489,596 487,770 487,770 0.024 -0.00053 1.01 1.00 -0.0032 0.0021 1.08 1.00 
43 489,636 979,272 1,833 489,636 487,803 487,803 0.037 -0.00018 1.02 1.00 -0.011 0.0047 1.04 0.99 
44 499,856 999,712 1,834 499,856 498,022 498,022 -0.0053 0.00033 0.98 1.00 0.028 0.0039 1.09 1.00 
45 501,119 1,002,238 1,841 501,119 499,278 499,278 0.081 0.00027 1.07 1.00 0.023 0.0031 1.11 0.99 
46 494,268 988,536 1,853 494,268 492,415 492,415 0.022 0.00048 1.04 1.00 0.037 -0.0018 1.05 1.00 
47 494,363 988,726 1,833 494,363 492,530 492,530 0.038 -0.00084 1.04 1.00 0.036 0.0028 1.12 0.99 
48 505,367 1,010,734 1,861 505,367 503,506 503,506 0.037 0.000011 1.06 1.00 0.04 0.0026 1.13 1.00 
49 491,267 982,534 1,821 491,267 489,446 489,446 0.054 -0.00089 1.07 1.00 0.001 0.002 1.11 1.00 
50 502,996 1,005,992 1,840 502,996 501,156 501,156 -0.00051 -0.00055 1.00 1.00 0.044 0.0037 1.02 1.00 
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Table A6 ― Estimation results for impact of fires on NPP from 2000 to 2021. 
 Impact of Fires on NPP of Forests   Impact of Fires on NPP of All Land  

 
Year of NPP 

Estimated ATE 
AI-Robust 

Std. Err. 
Treated 
Means 

Control 
Means   

Year of NPP 
Estimated ATE 

AI-Robust 
Std. Err. 

Treated 
Means 

Control  
Means  

 2000 -0.027*** 0.0064 0.19 0.23   2000 -0.012*** 0.0040 0.19 0.23  
 2001 -0.036*** 0.0065 0.21 0.23   2001 -0.022*** 0.0044 0.20 0.24  
 2002 -0.021*** 0.0058 0.19 0.21   2002 -0.0035 0.0038 0.20 0.22  
 2003  0.0031 0.006 0.18 0.2   2003 0.012*** 0.0042 0.17 0.20  
 2004 -0.0065 0.0061 0.20 0.23   2004   0.009** 0.0041 0.21 0.23  
 2005 -0.0003 0.0061 0.20 0.23   2005 0.012*** 0.0039 0.21 0.24  
 2006 -0.0011 0.006 0.19 0.21   2006 0.012*** 0.0038 0.20 0.22  
 2007 -0.0044 0.0052 0.20 0.23   2007 0.013*** 0.0041 0.20 0.23  
 2008 0.0019 0.0052 0.21 0.23   2008 0.014*** 0.0041 0.20 0.24  
 2009 0.0065 0.0057 0.19 0.23   2009 0.016*** 0.0042 0.20 0.24  
 2010 0.0015 0.0055 0.19 0.22   2010 0.013*** 0.0038 0.20 0.23  
 2011 0.0042 0.0056 0.21 0.22   2011 0.016*** 0.0037 0.21 0.23  
 2012      0.0094* 0.0056 0.20 0.23   2012 0.021*** 0.0040 0.21 0.24  
 2013 0.011* 0.0056 0.19 0.21   2013 0.019*** 0.0041 0.20 0.22  
 2014 0.0051 0.0049 0.21 0.21   2014 0.017*** 0.0038 0.2 0.23  
 2015 0.010* 0.0056 0.20 0.22   2015 0.017*** 0.0042 0.21 0.23  
 2016  0.012** 0.0051 0.20 0.22   2016 0.017*** 0.0040 0.20 0.23  
 2017  0.014** 0.0056 0.20 0.23   2017 0.019*** 0.0044 0.21 0.24  
 2018  0.014** 0.0056 0.19 0.2   2018 0.019*** 0.0040 0.19 0.21  
 2019  0.013** 0.0056 0.20 0.22   2019 0.020*** 0.0043 0.20 0.23  
 2020  0.014** 0.0056 0.20 0.22   2020 0.019*** 0.0043 0.21 0.23  

Notes:  ATE estimates as well as standard errors given in Fig. 3 were converted to MgC per ha for ease of interpretation. Since the original values of 
NPP are expressed in gC per 16×104 m2, Estimates shown here are of this original unit. Due to spacing concerns, Abadie-Imbens Robust standard 
errors are given to the right of ATE estimates. The indicators for statistical significance are as follows: 

*** 1% significance 
** 5% significance 
* 10% significance 
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Table A7 ―  Covariate balance and estimations details of the impact of fires on NPP from 2000 to 2021. 

Details and Statistics of Estimations on All Land 

Year of NPP 
Estimated 

Total 
Raw 
Obs. 

Total 
Matched 

Obs. 

Treated 
Raw 
Obs. 

Treated 
Matched 

Obs. 

Control 
Raw 
Obs. 

Control 
Matched 

Obs. 

Easting 
Std. Diff. 

Raw 

Easting 
Std. Diff. 
Matched 

Easting 
Var. Ratio 

Raw 

Easting 
Var. Ratio 
Matched 

Northing 
Std. Diff. 

Raw 

Northing 
Std. Diff. 
Matched 

Northing 
Var. Ratio 

Raw 

Northing 
Var. Ratio 
Matched 

2000 208,301 416,602 6,816 208,301 201,485 208,301  0.099 -0.00087 0.71 0.99 0.10 0.0040 0.71 1.042 
2001 208,301 416,602 6,816 208,301 201,485 208,301  0.099 -0.00087 0.71 0.99 0.10 0.0040 0.71 1.042 
2002 208,301 416,602 6,816 208,301 201,485 208,301  0.099 -0.00087 0.71 0.99 0.10 0.0040 0.71 1.042 
2003 208,343 416,686 6,818 208,343 201,525 208,343  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2004 208,343 416,686 6,818 208,343 201,525 208,343  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2005 208,343 416,686 6,818 208,343 201,525 208,343  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2006 208,363 416,726 6,818 208,363 201,545 208,363  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2007 208,363 416,726 6,818 208,363 201,545 208,363  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2008 208,363 416,726 6,818 208,363 201,545 208,363  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2009 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2010 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2011 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2012 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2013 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2014 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2015 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2016 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2017 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2018 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2019 208,369 416,738 6,818 208,369 201,551 208,369  0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 
2020 208,369 416,738 6,818 208,369 201,551 208,369 0.099 -0.00088 0.71 0.99 0.10 0.0040 0.71 1.042 

 

 

 


