Reroute or Wait It Out:

Estimating Optimal Route Decisions in the Presence of Unexpected Delays

J. Bradley Eustice* Jeremy Sage

*PhD Student
Freight Policy Transportation Institute
Washington State University

2 May 2016

Outline

- 1. Introduction
 - ► Problem
 - ► Contribution
 - ► Lit Review
- 2. Model
 - Data
 - Models
- 3. Conclusion
 - Results
 - Extensions

Problem

- ► Trucks make up a small percentage of road users, but bear a large percent of the costs from delays.
 - ▶ increased labor costs, wasted fuel, etc...

Congestion Cost by Vehicle Type

Contribution

► The purpose of this paper is to determine whether drivers are making optimal routing decisions.

Research Question:

"Are drivers making optimal reroute and waiting decisions in the presence of an unexpected delay?"

Lit Review

- ▶ Demand at time t is different than demand at time t+1. [Hsiao 2009]
- Customers "trade off price for waiting time."
 [Allon, Federgruen, & Pierson 2011]
- "Drivers are not committed to a single route."
 [Huchingson, McNees, & Dudek 1977]
- ► Shorter travel time "appears among the few most important independent variables."

 [Wachs 1967]
- ► Mean-variance model [Abdel-Aty, Kitamura, & Jovanis 1997], [Jackson & Jucker 1981]
- **...**

Data

- Origin-destination survey by Washington State University and the Washington DOT.
- ▶ 4600 truckers surveyed on I-90, the major thoroughfare between Eastern and Western Washington.
- origin, destination, commodity, weight, truck configuration, route frequency, origin/destination facility, etc...

Data

► Survey questions of interest:

"In the event of a weather related closure on Snoqualmie Pass, how long are you willing to wait before taking an alternative route?"

► categorical: 0 hours, 1 hour, 3 hours, 5 hours, 5+ hours, Don't know

"When you decide to reroute, what alternative route would you most likely use?"

► free response

Reroute

Model

- ▶ 3 reroute models to be estimated
 - Base model: optimal reroute = f (route duration)
 - Intermediate model: optimal reroute = f (route duration, congestion)
 - ► Full model: optimal reroute = f (route duration, congestion, alternate pass closure)

Base Model

- optimal reroute = f (route duration)
 - calculate the average route duration time via Google Maps Distance Matrix API (without traffic)

Intermediate Model

- ▶ optimal reroute = f (route duration, congestion)
 - calculate the average route duration time via the API (includes congestion)
 - calculate each unique destination over all 3 routes each hour of the day
 - ▶ 50,000+ routes

Full Model

- ightharpoonup optimal reroute = f (route duration, congestion, alternate pass closure)
 - Given that I-90 is closed, what is the probability that the alternate route pass will be closed?
 - past 5 years of closure data
 - calculate average closure times
 - penalty = P(closure|SP) * average closure + [1 P(closure|SP)] * 0

Results - Reroute

Optimal Route vs Stated Preference

<u> </u>				
Stated Preference	Google2	Google12	Google84	
	Base Model			
US2	41.2%	19.0%	30.0%	
US12	35.9%	47.6%	40.0%	
I-84	22.8%	33.3%	40.0%	
	1	ntermediate Mod	lel	
US2	43.0%	17.9%	31.3%	
US12	34.7%	54.7%	25.0%	
I-84	22.3%	27.4%	43.8%	
		Full Model		
US2	53.2%	26.4%	19.0%	
US12	27.7%	49.1%	19.0%	
I-84	19.1%	24.4%	61.9%	

Results - Distribution

Distribution of Optimal Routes and Stated Preferences

Route	Stated Preference	Base Model	Intermediate Model	Full Model
US2	40.3%	97.2%	88.3%	53.0%
US12	36.6%	1.9%	10.1%	43.0%
I-84	23.1%	0.9%	1.5%	4.0%

Results - Delay

Delay	Time	vs	Stated	Preferences
-------	------	----	--------	-------------

Delay Time	Delay Time	% Break-Even	% Stated Pref.
(description)	(minutes)	> Delay Time	> Delay Time
		Eastbound	
Ave. Closure	64	100.0%	75.7%
Ave. $+ 1$ Std. Dev.	135	90.7%	75.7%
Ave. $+ 2$ Std. Dev.	205	2.3%	62.7%
Ave. $+$ 3 Std. Dev.	275	0.1%	62.7%
		Westbound	
Ave. Closure	61	100.0%	76.8%
Ave. $+ 1$ Std. Dev.	150	83.7%	76.8%
Ave. $+ 2$ Std. Dev.	239	2.2%	61.9%
Ave. $+$ 3 Std. Dev.	328	0.1%	56.2%

Extensions

- ▶ Determine which drivers choose the optimal route and/or optimal waiting time
- ► Calculate cost in lost efficiency
- Sensitivity analysis