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Spatial and Temporal Differences in Price-Elasticity of Demand for Biofuels 

 

Abstract 

Increased public environmental awareness, concern for national energy security, and high 

transportation fuel prices have all served to heighten interest in alternative fuels.  A fundamental 

issue influencing economic viability of the ethanol industry is understanding consumers’ 

demand-responsiveness to both gasoline and ethanol price changes.  In this paper I present an 

alternative approach to studying this problem by estimating geographic variations in price-

elasticities of demand for ethanol across the study area, a departure from previous studies of 

ethanol demand, in which price-elasticity of demand is spatially identical.  Considering spatial 

heterogeneity in household composition and demand preferences, using global estimates to 

explain price-demand relationships over a large geographic area may lead to biased results.  I 

demonstrate that a spatially weighted regression technique provides superior estimates to a 

global regression model.  Resulting price-elasticities of demand for ethanol revealed significant 

geographic variation (ranging from -0.5 to -5.0), suggesting that use of spatially disaggregated 

data provides more detailed empirical results and, therefore, a more thorough understanding by 

policymakers leading change in the ethanol industry.   
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1 INTRODUCTION AND BACKGROUND 

Alternative fuel policies are designed to increase U.S. energy independence and to reduce 

harmful environmental emissions from transportation fuels.  According to Renewable Fuel 

Standards (RFS),1 biofuels production and use in the U.S. will reach 36 billion gallons by 2022 

(EISA, 2007).  To meet the RFS target, the U.S. Department of Energy (DOE) promotes use of 

higher blends of ethanol (e.g., E85, 85% ethanol and 15% gasoline)2 by targeting specific regions 

and cities to establish high concentrations of flexible fuel vehicles (FFVs).  The DOE also 

explores the possibility of using low-level blends of ethanol (e.g., E15 – 15% ethanol, 85% 

gasoline and E20 – 20% ethanol, 80% gasoline) in conventional vehicles.  Under requirements of 

Government Performance Results Act (GPRA), the Office of Energy Efficiency and Renewable 

Energy (EERE) estimates benefits of their portfolio of biofuel promotion programs.  Based on 

these estimates, EERE evaluates the cost-effectiveness of its programs and uses the findings in 

allocating program budgets (Bernstein and Griffin 2006).  One of the key parameters used in 

estimating benefits of those programs is the extent to which biofuel demand is sensitive to price 

changes (i.e., price-elasticity of demand).  Therefore, understanding consumers’ demand-

responsiveness to ethanol and gasoline price changes at a county level is critical to implementing 

state level renewable fuel policies in a more cost-effective manner.  

The main purpose of this paper is to investigate consumers’ demand-responsiveness to 

fuel price changes across geographical space.  In particular, I estimate temporal and spatial 

variations for own-price and cross-price elasticity (gasoline-price elasticity) of demand for 

ethanol in Minnesota.  In previous studies of ethanol demand, price-elasticity of demand for fuels 

was assumed to be constant across the study area (Anderson 2008; Hughes et al. 2008; Yatchew 

                                                 
1 The Renewable Fuel Standard is a key provision of the Energy Independence and Security Act (EISA) of 2007, a 
government policy designed to secure roughly one-third of U.S. transportation fuel consumption. 
2 Henceforth, “E85” and “ethanol” are used interchangeably.   
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and No 2001; Schmalensee and Stoker 1999).  I extend the model of household demand for close 

substitute transportation fuels (ethanol and gasoline) developed in Anderson (2008) to allow 

spatial variation of price-elasticity.   

First, I use monthly price observations and sales volumes of individual E85 service 

stations in Minnesota to estimate own-price and cross-price elasticities of ethanol demand based 

on the initial model of household demand for transportation fuels.  Then I motivate the problem 

of spatial non-stationarity in the data structure.  The results from an exploratory data analysis 

show evidence for spatial autocorrelation in regression residuals from OLS and 2SLS 

specifications.  The spatial structure of data indicates that the value of dependent variable in one 

spatial unit (a service station in this case) is affected by independent variables in nearby units.  

Thus, the assumption of normally and independently distributed error terms when employing 

ordinary least squares (OLS) regression is violated with the existence of spatial autocorrelation.  

This indicates that non-spatial methods can lead to biased and inefficient parameter estimates 

(Lesage and Pace 2009).  I extend and improve existing models by proposing an alternative 

model specification that accounts for spatial heterogeneity in data structure and provides superior 

estimates over global (i.e., OLS) regression models.   

I utilize data collected from ethanol service stations in Minnesota, a nationwide leader in 

production and use of ethanol as an additive to gasoline for the last two decades. Prior to 1990, 

Minnesota provided a tax credit for blending ethanol into gasoline.  However, the tax credit was 

found to negatively influence funding for transportation.  The credit was classified as ineffective 

in increasing ethanol production and was phased out in mid-1990s.  Another state financial 

support program, started in 1987, provided 20 cents per gallon to in-state ethanol processors for 

the first 15 million gallons of annual production.  Currently, Minnesota provides tax incentives to 
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increase E85 blending by taxing it at a lower rate than E10 or gasoline.  Additionally, grants 

were provided to service station owners for installing E85 dispensing pumps.; many of these 

stations participated in a monthly survey conducted by Minnesota Department of Commerce and 

American Lung Association of Minnesota.  Nearly all gasoline sold in Minnesota is required to 

contain 10% of ethanol (E10).  By August 2013, this state law requirement will be increased to 

20% (E20), conditional on the increase in the current 10% “blending wall” established by the 

federal government.  The combination of these state financial incentives and consumption 

mandates aim to achieve a broader goal of securing 25% of Minnesota’s energy demand from 

renewable sources by 2025 (Yunker 2009).  

The rest of the paper is organized as follows.  The next section provides a brief overview 

of relevant literature.  The Theoretical Framework section introduces a basic model of household 

demand for close substitute fuels (gasoline and ethanol).  This section also incorporates spatial 

patterns in price-elasticity into the model.  In the section titled Empirical Model I first motivate 

the problem of spatial dependence and spatial heterogeneity in data.  The basic model of 

household demand for fuels is then extended into a spatial demand model.  Data sources are 

detailed in the Data Sources subsection, including a map that shows distribution of service 

stations in relation to five ethanol blending terminals (racks) and major highways in Minnesota.  

The remaining sections report and compare basic and spatial model results. The geographically 

weighted regression (GWR) estimates were used to visualize variation of price-elasticity 

estimates across time and space in the study area.  I conclude by discussing implications of my 

findings on state-level ethanol policies and for continued research in this realm at the national-

level in the Policy Implications and Conclusions section. 
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2 RELEVANT LITERATURE 

Due to the relatively short period of ethanol availability in the marketplace and consequent data 

limitations, the literature on demand estimation is minimal.  Anderson (2008) shows that 

household demand for ethanol as a close substitute to gasoline are sensitive to gasoline/ethanol 

relative prices.  The gasoline-price (cross-price) elasticities of ethanol demand were estimated to 

be in the 2.5 - 3.0 range.  The results were applied to study ethanol content standard related 

policies.  

Recently, Bromiley et al. (2008) analyzed factors that influence consumer use of E85 in 

Minnesota.  The authors argue that estimating household demand for ethanol for the purposes of 

understanding their sensitivity to price changes is an important component for economic viability 

of the emerging ethanol industry.  Schmalensee and Stoker (1999) argue that household 

composition, demographic characteristics, and demand preferences change considerably over 

time and geography, and that it is reasonable to expect that not only temporal but also spatial 

variations will influence household demand for transportation fuel.  Additionally, consumers’ 

environmental perceptions regarding biofuels and their attitudes about price and performance 

relative to imported petroleum-based fuels may vary depending on where they live and purchase 

fuel (Bromiley et al. 2008). 

In contrast, a great deal of attention has been paid to estimating price-elasticities of 

demand for gasoline.  Hughes et al. (2008) analyze U.S. gasoline demand in two time periods – 

1975 to 1980 and 2001 to 2006.  The short-run elasticities varied from -0.31 to -0.34 for the first 

period, and from -0.034 to -0.077 for the second, thus providing evidence that short-run price-

elasticity of gasoline demand is more inelastic in recent years.  These results are consistent with 

those of recent meta-analytic studies (Espey 1996; Graham and Glaister 2002), which report -
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0.27 and -0.23 for the short-term price-elasticities, and -0.71 for the long-term.  Some recent 

estimates reported in Brons et al. (2008) showed a slightly higher range, varying from -0.34 for 

short-run to -0.84 for long-run price-elasticities.  Contrary to these findings of inelastic gasoline 

demand, Greene (1989) found own-price elasticity estimates to be over -15.0 (in absolute 

values).  

However, none of these studies explicitly consider spatial attributes and/or provide a 

county-level geographic comparison for price-elasticities, which has important policy 

implications related to local governmental regulations for low-level vs. higher blends of ethanol.  

Bernstein and Griffin (2006) use a dynamic demand model to investigate geographic differences 

in price-demand relationships at regional, state and sub-state levels.  The results showed that 

there are regional and state differences in energy demand-responsiveness to price changes.  

However, their analyses only covered electricity and natural gas in the residential sector and 

electricity use in the commercial sector.  

 Spatial regression techniques are widely used to analyze data that has spatial 

characteristics (Case 1991), including hedonic house price spatiotemporal autoregressive models 

(Pace et al. 1998), and transportation spatial demand models (Henrickson and Wilson 2005). 

Henrickson and Wilson (2005) used a moving-window regression to estimate barge 

transportation demand elasticities.  This approach is conceptually relevant to GWR technique as 

it produces spatially varying (to some extent) parameter estimates.  However, the moving-

window regression introduces so-called edge effects, because data points within each local grid 

are given a weight equal to 1 (thus, are included in the regression), and those outside of the grid 

are given a weight of 0, which imposes limitations on capturing spatial variation between the 

two.   
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3 THEORETICAL FRAMEWORK 

In this section, I first introduce a basic model of household demand for close substitute fuels 

(gasoline and ethanol).  I start with a basic model that reflects previous transportation fuel 

demand estimation models (Rask 1998; Anderson 2008; Hughes et al. 2008).  Following the 

model in Anderson (2008), the household’s utility function in terms of transportation fuels and 

other goods can be represented as , , , where  and  are consumption levels of 

close substitutes (ethanol and gasoline), and  represents the composite good.  Consumers’ fuel 

choice decisions depend on the difference between gasoline and ethanol fuels.  Since gasoline 

and ethanol are close substitutes, the household demand lands at the corner solution, such that 

the household will purchase ethanol only when / , where  and  are per gallon retail 

prices of ethanol and gasoline respectively, and  (alternatively called fuel-switching price ratio) 

specifies the rate at which the consumer converts gallons of gasoline into ethanol-equivalent 

gallons.  Therefore, ethanol is purchased when its price is less than ethanol-equivalent fuel price, 

which is / .  Alternatively, the household will purchase gasoline when		 / .  In other 

words, because ethanol has lower energy content (i.e., provides fewer miles per gallon), the fuel 

type decision is made based on ethanol-equivalent price (Anderson 2008).   

Relative prices influence households’ decisions in choosing between gasoline and 

ethanol.  However, the quantity demanded still depends on the absolute levels.  For the consumer 

who owns a flexible fuel vehicle (FFV that uses both gasoline and ethanol), I allow the quantity 

of ethanol demanded to be expressed as .  The household demand for ethanol can be 

aggregated by assuming that out of  households that own vehicles,  fraction own FFVs.  It is 

also assumed that each household owns a single vehicle. Further, it is assumed that fuel-
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switching price ratio r has differentiable cumulative distribution function , which is defined 

on [0,∞).  Because / , i.e., households choose ethanol only when the fuel-switching ratio 

is less than the relative price, the portion of households that choose ethanol is the function 

evaluated at / .  Given these assumptions, the aggregate demand for ethanol, as 

represented in (Anderson 2008), takes the following form 

 (1) ,
/

 

where the total number of households, , is multiplied by the fraction that own FFVs ( , 

multiplied by the fraction of those FFV owners who choose ethanol (which as shown in the 

equation above is a function of relative prices), multiplied by level of ethanol consumption by 

households that choose ethanol, which is a function of absolute price of ethanol (Anderson 

2008).  Further, the following logged aggregate demand model then can be used to derive the 

price-elasticity of demand for ethanol, and gasoline-price elasticity (cross-price) of demand for 

ethanol 

(2) , . 

The approach described above, however, does not incorporate considerations of spatial 

patterns in household demand into the model.  Schmalensee and Stoker (1999) introduced a 

model of household demand for gasoline as a function of income, demographics and location.  

The authors argue that demographic shift played an important role in increasing overall 

transportation fuel consumption over the last decades.  The same source reports that household 

structure (number of drivers, household size, and household head age) has strong effects on 

gasoline demand.  In addition to geographically varying household composition, the existence of 

spatial patterns in demand can be motivated by consumers’ interdependent preferences.  Yang 

and Allenby (2003) introduce a model of interdependent consumer preferences with data on 
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automobile purchases, in which they found that preferences for Japanese-made cars are attributed 

to geographically and demographically defined networks.   

In our analysis, the model of ethanol demand can be specified such that it captures the 

influence of local factors.  Based on these theoretical priorities, I extend the household demand 

model introduced above to account for geographic variations in household composition and 

demand preferences, which in turn influence price-elasticity of demand for fuels.   

 

4 EMPIRICAL MODEL 

4.1 Basic Model of Consumer Demand for Ethanol 

The model of consumer demand for ethanol in Minnesota uses sales volume and price data 

reported by more than 300 service stations over 12-year period.  The econometric model for 

estimating the ethanol demand basic model described above can be specified by the following 

equation 

∑ Ζ  

where   is the monthly ethanol fuel sales volume for location  (service station) and time  

(months),  is a matrix of explanatory variables.  For each of the locations, the regressors 

included in the  capture county/station-specific characteristics, such as retail ethanol prices, 

retail and wholesale gasoline prices, the number of fueling stations that offer E85, per-capita 

disposable income, and number of vehicles.  Matrix Ζ  represents time-invariant station-specific 

variables, such as service stations’ distance to ethanol blending terminals (alternatively called 

racks) and stations’ distance to the state’s major highways.  The  represents the regional 

dummy (e.g., rural vs. urban), 	represents unobserved demand factors that vary at the month 

(3) 
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level, and  is a random error term, assumed to be normally distributed.  In a classical ordinary 

least squares specification, these parameters are assumed to be constant across the study area. 

Therefore, according to this specification, any geographic variations of the relationships between 

 and the parameters are captured in the error term.  The focus of the next section is addressing 

these spatial variations in the model. 

4.2 Identification Issues and Spatial Non-Stationarity 

Estimating demand functions that include price among the explanatory variables is often subject 

to endogeneity issues. In my model, the parameter estimates will be biased if the fuel prices are 

correlated with unobserved characteristics embedded in the error term.  Anderson (2008) argues 

that many ethanol retail stations in Minnesota price ethanol at a fixed discount to gasoline 

(specified in a contract with suppliers that lasts several months, sometimes a year).  This 

indicates that the correlation between ethanol prices and local, short-term ethanol demand shifts 

is less likely.  This pricing behavior implies that local ethanol demand shifts are not correlated 

with individual (i.e., fueling station) price variations.  Conditional on the argument above, OLS 

estimation results will not be biased.   

Another concern is possible spatial autocorrelation in my data, which conflicts with the 

assumption of normally and independently distributed error terms in the model.  “There are 

spatial variations in people’s attitudes or preferences or there are different administrative, 

political or other contextual issues that produce different responses to the same stimuli over 

space” (Fotheringham et al. 2002).  The utilization of ethanol sales volume and price data across 

Minnesota for estimating price-elasticity of demand using traditional econometric methods (e.g., 

OLS regression) involves two types of problems.   
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The first problem is the spatial dependence.  In our case, spatial dependence is the extent 

to which the values of monthly sales volume at one service station depend on the values at 

another service station in the vicinity. Considering n geographic locations, the spatial 

dependence can be represented as the following equation 

 (4) , , … , 				  

where  is the value of the variable (e.g., sales volume), and  and  are locations (e.g., service 

stations).  Spatial dependence violates the traditional Gauss-Markov assumption that explanatory 

variables are fixed in repeated sampling (Lesage and Pace 2009).  One reason for the existence 

of spatial autocorrelation can be the measurement error.  Another reason for spatial dependence 

can be related to E85 station locations (e.g., proximity to ethanol blending terminal or to major 

highways in the study area).    

The second problem is spatial heterogeneity, which violates another Gauss-Markov 

assumption that a single linear relationship with constant variance exists across the sample data 

observations.  As shown in equation (5), local relationships can be modeled for each service 

station in the study area 

 (5) , , … ,  

where  is the dependent variable at location  (indexed as 1,… ,  points in space),  is a 

vector of explanatory variables,  is the associated set of parameters to be estimated, and  is a 

stochastic disturbance term.   

I calculated the Moran’s I statistic (Moran 1950) for residuals from the OLS regression 

(11).  Results represented in the Results section revealed a moderate spatial correlation in OLS 

residuals, with statistically significant Moran’s I statistic varying from 0.115 to 0.17. The GWR 

model, which allows spatial variation of underlying data structure, should largely eliminate the 
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problem of spatial autocorrelation in the error term.  To confirm validity of the GWR approach, 

the Moran’s I statistic for OLS/2SLS and GWR model residuals are compared in the GWR 

Model Estimation section. 

 

4.3 Spatially Explicit Model of Consumer Demand for Ethanol 

In this section I extend the econometric model (3) to a spatially weighted regression model.  To 

address the traditional econometric restrictive assumption of identical or stationary relationships 

over the space, some of the papers reviewed earlier employed indicator variables.  One of the 

specifications considered in Anderson (2008) restricted the data to two relationships by including 

urban vs. rural dummy variables to observe region effects.  However, it is not known if only two 

dummies for the entire study area is appropriate disaggregation, or if additional sub-regional 

dummies should be included.  Another approach, market segmentation, is used to reformulate 

data into a small number of mutually exclusive and collectively exhaustive sub-samples (e.g., 

geographical samples – counties, states; socio-economic samples – income groups, education 

levels, etc.).  Both of these strategies (dummy variables and market segmentation) introduce a 

problem of discontinuity in data, which eliminates the local spatial variations among different 

locations (for which data are available) in the study area.  

The GWR model that I utilize to estimate spatially varying price-elasticity coefficients is 

a relatively recent methodology that accounts for spatial non-stationarity in data (Fotheringham 

et al. 2002).  The GWR methodology includes a spatial weighting matrix that assigns higher 

weights to regressors in the near locations, and gradually decreases the weights as the distance 

from the regression point increases.  In my spatially weighted model, the regression points are 

service stations.  The GWR specification will produce local price-elasticity estimates of demand 
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for ethanol throughout the study area.  The estimates then can be mapped using Geographic 

Information Systems (GIS) software.  Following notation in Fotheringham et al. (2002), I specify 

demand for ethanol fuel at each location from which the data were drawn as the following 

, 	 ∑ , ∑ ,  

where  is the dependent variable (monthly ethanol sales volume) for each of the th fueling 

stations in the study area,  is a matrix of time and location-specific explanatory variables 

discussed above, Ζ  represents the time-invariant variables, and  is the error term. Coefficients 

 and  are to be estimated for each of the fueling station at ,  projected coordinates (i.e., 

converted from geographic coordinates).  The expressions for parameters ,  and 

, 	indicate that the price-elasticity of demand for ethanol and the other estimates are 

location-specific.  The estimator for this model has the following form 

 (7)                                      , , ,  

where ,  is a distance-based weighting matrix for expressing potential interaction among 

spatial units (e.g., fueling stations).  One way to assign weights to the elements in the weighting 

matrix is using the following relationship  

(8)                                        	 								 		 , 					
																				 			

	  

where the ,  is a measure of Euclidean distance between the th observation and the 

location ,  (i.e., a regression point or service station),  is some bandwidth.  However, 

similar to the concept of moving window regression, this strategy introduces some extent of 

spatial discontinuity.   To overcome that problem, we compute the weights as a continuous 

function of a distance.  One possible way of calculating it is according to a kernel that has a 

Gaussian shape:   

(6) 
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 (9)        / , / 	 

In this weighting scheme, the ,  is a measure of Euclidean distance as described above, 

and  is bandwidth.  The bandwidth parameter for our distance-based weighting matrix is 

selected using the following cross-validation procedure  

∑  

where  is the sample size,  denotes the fitted value of  with the observation for point  

omitted from the calibration process (Fotheringham et al. 2002).3  A value of  that minimizes 

the CV score is then used as the distance-weighting bandwidth.  If the th observation and the 

location ,  in weighting scheme (9) coincide, i.e., data were observed at location , , 

the weight for that point will be unity.  Then the weights of other locations around it will 

decrease according to a Gaussian curve as distance between the two increases.4  The spatial 

kernel represented in (9) avoids the discontinuity problem by assigning decreasing weights 

(according to a Gaussian shape curve) as the distance between two locations increases 

(Fotheringham et al. 2002).   

 

5 DATA SOURCES  

Ethanol price information was obtained from a survey conducted by Minnesota Department of 

Commerce and American Lung Association of Minnesota.  The data include monthly price 

observations and sale volumes of individual E85 service stations in Minnesota from 1997-2009. 

The number of participating E85 service stations was less than 10 in 1997, then steadily 

increased up to more than 330 by mid 2009.  As of September 2009, Minnesota had the highest 

                                                 
3 In the CV equation, omitting the ith observation is necessary, otherwise the CV score will be minimized when 

0, i.e., as → 0, 	 → , so the CV score is minimized when 0.   
4 The parameter estimation points are usually coinciding with the points from where data were drawn, but it is not a 
necessary condition (Fotheringham et al. 2002).   

(10) 
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number of E85 stations in the nation (351).  This makes up more than 18% of the total number of 

E85 stations in the U.S. (U.S. DOE Alternative Fuels and Advanced Vehicles Data Center).5   

This information was used to calculate the number of fueling stations (offering E85) in 

each county for each time period.  Monthly observations of retail gasoline prices were averaged 

from the Minnesota Weekly Gasoline Retail Price Reports provided by the Energy Information 

Administration (EIA).  Wholesale gasoline prices were obtained from the Minnesota Regular 

Gasoline Wholesale/Resale Price by Refiners database provided by the EIA.   

Figure 1 shows the relationship between ethanol and gasoline prices in Minnesota from 

2000 to mid 2009 period. Using historical consumer price index from the Department of Labor, 

all prices were converted into real 2009 prices.  In contrast to service station-level ethanol sales 

data, the gasoline prices were only available at a county-level, and for only 2000- 2009. As a 

result, the number of observations was decreased from 13,339 (1997- 2009) to 8,542 (2000-

2008).  

 

Figure 1: Gasoline and ethanol retail prices 
 

                                                 
5 For the distribution of all E85 service stations in the U.S. see Table 4 in the Appendix. 
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Per-capita income information (converted into 2009 dollars) was obtained from the 

Federal Reserve Economic Data (FRED) state/county-level database. Time series of the number 

of vehicles per county was obtained from Driver and Vehicle Services at the Minnesota 

Department of Public Safety.  A small portion of observations were dropped due to missing or 

not reported prices and sales volumes.  The inclusion of income and vehicle stock variables 

restricted the number of usable observations further.  As a result, the number of observations was 

decreased from 8,542 to 6,860. (i.e., the time period was restricted to 2003-2008).   Figure 2 

depicts spatial distribution of E85 service stations included in my analysis, in which some level 

of local clustering can be observed around the Twin Cities area. 

 

Figure 2: Geographic distribution of E85 service stations in Minnesota in 2009 
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Additionally, I used GIS to derive Manhattan distances (in miles) between ethanol fueling 

stations and five ethanol blending terminals in Minnesota (Minneapolis, Alexandria, Moorhead, 

Rochester and Duluth).  The terminal location information was obtained from the Oil Price 

Information Service (OPIS) Rack Cities guide.   
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I also used Minnesota’s highway network GIS shapefile6 and station locations available 

from the American Lung Association and Clean Air Choice organization.7 Table 1 provides 

descriptive statistics for the data used in this paper. 

 

Table 1: Descriptive Statistics 

        

Variables Mean Stdev Min Max 

Ethanol sales volume (gallons/month)          5,186          4,883               11         37,770 
Income ($/per-capita)        39,565          6,783        27,274         49,196 
Ethanol price (retail; $/gallon) 2.21 0.47 1.02 3.86 
Gasoline price (retail; $/gallon) 2.66 0.60 1.64 3.87 
Gasoline price (wholesale; $/gallon) 1.75 0.61 0.92 3.35 
Distance from nearest highway (miles) 22.44 24.51 0.28 144.00 
Ethanol pumps in county (number/month) 6 4 1 17 
Distance from nearest rack (miles) 34.15 26.32 1.00 100.00 
Vehicle stock in county (number/month)    256,533      322,812        10,245    1,115,371 

 

 

6 RESULTS 

6.1 Basic Model Results 

First, I estimate the model of aggregate ethanol demand as specified in the equation (3).  I let  

denote ethanol and gasoline prices, per-capita income, number of vehicles, and number of 

stations offering ethanol, Ζ   represents time-invariant distances to racks and to highways, 	and 

 represent regional and monthly dummy variables respectively.  The equation (3) can be 

represented as the following 

                                                 
6 Minnesota road networks GIS shapefiles are available from the Minnesota Department of Transportation 
(http://www.dot.state.mn.us/maps/gisbase/html/datafiles.html) 
7 The map of E85 station locations can be found at: http://www.state.mn.us/mn/externalDocs/Commerce/State-
wide_E-85_station_map_121302123133_MinnesotaE85StationsMap.pdf 
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 (11) ln ln ln ln  

ln ln ln  

1 ⋯ 11 	 	 

where  is the monthly ethanol sales for all participating E85 stations throughout the time 

period,  is the retail ethanol price (that was instrumented with wholesale gasoline prices in 

the 2SLS regression),  is the retail gasoline price,  is the per-capita income,  is 

the number of vehicles in each county,  is the number of E85 stations in each county in 

each time period (i.e., service stations having E85 dispensers/pumps).   represents time-

invariant distances from each E85 station to the nearest ethanol blending terminal;  is 

time-invariant distance-to-highway variable representing distance from each E85 station to the 

nearest major highway node in the state.   is a regional dummy variable controlling regional 

effects for the Twin Cities area.  Finally, 1 through 11 are controls for time effects, and 	is 

the random error term. 

Table 2 provides a summary of OLS/2SLS estimates from the model described above.8 I 

estimated the model for the whole time period, as well as separating data for the prior and post 

Energy Independence and Security Act of 2007 periods.  The own-price elasticity of demand was 

found to be -3.21 for the 2003-2008 period, and -3.33 for the 2SLS model, indicating a ten 

percent increase in the price of ethanol leads to 32.1 and 33.3% decrease in the quantity of 

ethanol demanded respectively.  

 

Table 2: Basic Model Estimation Results 

                                                 
8 Wholesale gasoline prices in Minnesota was used as an instrument for E85 prices. Ethanol sales represent a small 
portion of the gasoline consumption in Minnesota, therefore, wholesale gasoline prices can be considered as 
exogenous in our model. 
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Dep. Var. = LN(ethanol  monthly sales)  

 
2003-2008  

(OLS) 
2003-2006 

(OLS) 
2007-2008 

(OLS) 
2003-2008  

(2SLS) 
LN(PE)  -3.21*** -2.60*** -4.11*** -3.33*** 

(0.05) (0.09) (0.09) (0.06) 
LN(PG) 4.35*** 4.67*** 4.36*** 4.22*** 

(0.12) (0.17) (0.18) (0.12) 
LN (INC) 0.41*** 0.66*** 0.17* 0.25*** 

(0.08) (0.12)  (0.11) (0.08) 
LN (VEH) 0.29*** 0.22*** 0.43*** 0.27*** 

(0.01) (0.02)    (0.02) (0.01) 
LN (NSTAT) -0.27*** -0.22*** -0.47*** -0.24*** 

(0.02) (0.02)   (0.03) (0.02) 
LN (DISTR) (0.02)* -0.01 0.03*** 0.01 

(0.01) (0.01)   (0.01) (0.01) 
LN (DISTH) 0.02*** 0.07*** -0.003 0.02*** 

(0.01) (0.01)   (0.01) (0.01) 
Reg. Dummy 2.51*** 2.19*** 2.88*** 2.49*** 
(Twin Cities area) (0.05) (0.07)    (0.09) (0.02) 
Month. Dummies  y y y y 
N 6860 3163 3697 6860 
Adj. R-squared 0.43 0.47 0.45 0.43 
Moran’s I Statistic 0.165 0.115 0.112 0.170 
Z-score 3.98 3.21 2.58 4.00 
P-value 0.000 0.000 0.000 0.000 

***p<0.05, **p<0.1, *p<0.2.  Standard errors are in parentheses.  Dependent variable is monthly ethanol 
sales volume in gallons.  Prices are in 2009 dollars; income is the real per capita disposable income in 
2009 dollars. 

 

One of the reasons that the change in quantity of ethanol demanded is proportionately 

larger than change in price (i.e., demand is elastic) is that consumers have quick access to close 

substitute fuel – gasoline – at almost zero search cost.  In other words, every station that offers 

E85, also offers gasoline.  Another reasonable explanation for the high elasticity estimate is 

consumers’ concerns related to ethanol’s corrosive characteristics.  Some service stations in the 

Midwest advertised gasoline as “ethanol free” fuel, emphasizing that E85 results in a reduced 

range (miles per tank of fuel) and engine problems because of its moisture content (Galbraith 

2008).  Considering these conditions, consumers may show high sensitivity to small price 
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increases by decreasing their consumption of ethanol fuel or by switching to gasoline.  The 

estimate for post EISA period (2007-2008) was estimated to be -4.11, much higher in absolute 

value compared to prior to EISA period (2003-2006) estimate of -2.60.  

Gasoline-price elasticity of ethanol demand was estimated to be 4.35 for the whole period 

(2003- 2008); 4.67 and 4.36 for prior and post EISA periods, suggesting relatively stable, 

sensitive ethanol demand-responsiveness to gasoline prices changes throughout the study period.   

Gasoline-price elasticity derived from the 2SLS model is in a similar range (4.22), indicating a 

10% increase in the price of gasoline leads to 42.2% increase in the quantity of ethanol 

demanded.  Income-elasticity of demand for ethanol was found to be 0.41 for the 2003-2008 

period.  This estimate is consistent with results from a recent study that analyzed similar data 

(Bromiley et al. 2008).  The authors found that the influence of income levels on E85 monthly 

sales is minimal in magnitude and statistically insignificant.  These results are also comparable to 

estimates found in (Hughes et al. 2008), which reports income-elasticity of gasoline demand in 

the 0.47 to 0.54 range.  

The estimate for vehicle stock variable (0.29) for the 2003-2008 period suggests that 

every 10% increase in vehicle stock will lead to only 2.9% increase in ethanol sales. However, 

due to data limitations I am using a conventional vehicle stock variable as a proxy for FFV stock 

in my analysis.  Therefore, this coefficient may not fully reveal the relationship between 

increasing FFV stock and E85 sales levels.  The estimates for prior and post EISA periods was 

found to be 0.22 and 0.43, respectively.  According to Minnesota Department of Public Safety 

registration records, the total number of passenger vehicles in Minnesota reached 3.34 million in 

2006, a slight increase from 3.4 million in 2008.  Considering 125,000 FFVs in 2006 in 

Minnesota, as reported in Bromiley et al. (2008), the proportion of FFVs is less than 5%.  
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Overall, the estimate is in accordance with my expectation of a positive relationship between 

stock of vehicles and fuel sales.  

The number of ethanol stations per county estimate resulted in -0.27 for 2003-2008, and -

0.22 and -0.47 for prior and post EISA periods. Consistent with previous findings (Anderson 

2008), the negative sign suggests that a 10% increase in number of ethanol stations in a county 

will reduce existing neighbor station E85 sales by 2.7, 2.2 and 4.7% respectively.  

The distance to a major highway variable showed relatively weak (0.02, 2003-2008 data; 

0.07, 2003- 2006 data) influence on the E85 sales volume.  Generally, retail gasoline prices are 

positively correlated with distance from source of supply (i.e., refineries, blending terminals, 

pipelines, ports, etc.) as distribution costs increase with distance.  However, retail ethanol is 

primarily shipped to service stations from blending terminals located near large consumption 

areas.  Also, major highways are positively correlated with local clusters of regular gasoline 

stations and relatively dense traffic of both conventional vehicles and FFVs.  This suggests that 

there is more demand for regular gasoline at locations around or in close proximity to major 

highways.  Therefore, ethanol stations that are near major highways may sell less E85 compared 

to those located further away.  

The influence of distances to blending terminals in Minnesota on E85 monthly sales 

volume is slightly weaker than that of distance to highway variable described above (0.02, 2003- 

2008 data; 0.03, 2007-2008 data).  All five blending terminals are located close to major 

highways in the state.  The same reasoning – relatively dense traffic of conventional vehicles on 

major highways (i.e., higher demand for regular gasoline) – may explain the positive influence of 

distance to racks variable on E85 sales.  The estimate for regional dummy variable TC (Twin 

Cities) is positively correlated with ethanol sales.  Lastly, monthly dummy estimates (not 
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reported here) reflected expected seasonal variation in transportation fuel demand, indicating 

relatively increased levels of ethanol sales during summer months. 

6.2 GWR Model Results 

In this section I estimate and visualize the spatial extension of the ethanol demand model 

described in the Spatially Explicit Model of Consumer Demand for Ethanol.  Considering the 

variable descriptions (  includes ethanol and gasoline retail prices, per-capita income, number 

of vehicles, and number of stations offering ethanol, Ζ   represents time-invariant distances to 

blending terminals and to highways, 	and  represent regional and monthly dummy variables 

respectively), the GWR model (6) can be represented as 

 

 (12)   , , , 	 ,  

, , , ,  

 

Note that the model does not include binary variables as GWR allows explanatory variable 

coefficients to vary across the study area. Thus, binary variables are not necessary, and their 

inclusion will introduce local collinearity.  The result of the GWR model is a “surface” of 

parameter estimates across ethanol stations in Minnesota included in this study.  Figure 3 

illustrates spatial changes in magnitude of price-elasticity of demand for ethanol for 2008.  The 

coefficient estimates covering the full time period are included in Figure 8 of the Appendix. 
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Figure 3: Spatial distribution of price-elasticity of demand for ethanol in Minnesota 
 

 
 

With a few outliers in Itasca County in the northern part of the state, the figure shows elastic 

ethanol demand cluster around the Twin Cities area (-5.0 to -2.2).  Most of the estimates in the 

rural areas vary from -0.5 to -2.7.  Overall, the estimated high elasticities are consistent with my 

expectations, explained by the availability of close substitute gasoline at almost zero search cost 

(since every service station where E85 is available also offers gasoline).  The variation in 

estimates also supports motivation of the existence of spatial heterogeneity in the data structure.  
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I have also visualized gasoline-price (cross) elasticities of ethanol demand (Figure 4).  The 

estimates widely vary from -0.06 to 5.7 across the space.  Because my analysis assumes only 

gasoline and ethanol fuels, the cross-price elasticity is comparable to elasticity of Minnesota’s 

ethanol market share.  The estimates in OLS/2SLS estimation showed that consumers are 

generally highly sensitive to both ethanol and gasoline price changes.  However, my findings 

from the GWR model indicate that consumers’ demand-sensitivity to price changes widely varies 

geographically.    

In addition to visualizing own- and cross-price elasticities in a map, Table 3 provides a 

summary of estimates for comparing GWR and OLS results side by side.  As shown in the table, 

the OLS cross-price elasticity estimate (4.35) is found between upper quartile and maximum 

values of the GWR results.  The own-price elasticity estimate from the OLS model (-3.21) falls 

between minimum and lower quartile values of the GWR estimates.  Spatial distribution of the 

own-price and gasoline-price in Figure 3 and Figure 4 reveal that the OLS results represent only 

a portion of the geographic variation in gasoline-ethanol price-demand relationships.  
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Figure 4: Gasoline-price elasticities of ethanol demand 

 

 

 Income-elasticities for the Twin-Cities area were found in the 1.4 to 2.5 range (Figure 5), 

indicating a positive relationship between income levels and ethanol consumption in the urban 

area.  The estimates for the rest of the regions change from negative to positive sign, ranging 

from -2.1 to 1.3.  According to the comparison in Table 3, the OLS estimate (0.41) for income-

elasticity falls between lower quartile and median values of the GWR estimates. 
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Table 3: GWR parameter summary and comparison with the global (OLS) model coefficients 

Variables Min 

Lower 
Quartile  

(25th 
percentile) 

Median  
(50th 

percentile)

Upper 
quartile  
(75th 

percentile)

Max 
OLS 

(2003–
2008) 

Standard 
errors–

OLS/2SLS  
(2003–
2008) 

GWR 
coefficients 
variability 

statistic 
√  

ln(PE) –5.00 –2.70 –2.08 –1.40 –0.50 –3.21 0.05 1.06 

ln(PG) –0.06 2.49 3.35 3.93 5.70 4.35 0.12 1.11 

ln(INC) –2.10 –0.48 0.95 2.02 2.50 0.41 0.08 1.36 

ln(VEH) –0.21 –0.02 0.13 0.33 0.59 0.29 0.01 0.21 

ln(NSTAT) –0.51 –0.39 –0.26 -0.14 0.06 –0.27 0.02 0.15 

ln(DISTR) –0.19 –0.08 –0.01 0.07 0.75 0.02 0.01 0.14 

ln(DISTH) –0.22 0.07 0.12 0.20 0.64 0.02 0.01 0.09 
 

A close examination of the map provided in Figure 5 indicates that the OLS captured only part of 

the geographic area outside of the Twin Cities area (to the West and to the Southeast). Overall, 

as shown in Table 3, GWR estimates show substantial variation in contrast to OLS estimates. 

Comparison of estimates across all variables shows that OLS results are representative of only a 

segment of the entire range of elasticity estimates. 

I test the following hypothesis: : ,  where  indexes the locations, 

against : , . To test this hypothesis, Brundson et al. (1998) suggest to measure 

variability of GWR coefficients (price-elasticities in this case) using the following statistics: 

∑ , . / , where a dot in the subscript of the second  coefficient denotes 

averaging GWR coefficients over  locations.  The  for all variables in the model is then 

compared with the standard errors from the OLS/2SLS model (the last column of Table 3). 
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Figure 5: Spatial distribution of income-elasticity of ethanol demand in 2008 

 

 

 

As shown in Table 3, all of the variability statistics are greater than the standard errors from 

OLS/2SLS models, suggesting an improvement upon the conventional estimation method.  

Additionally, I tested residuals from the GWR for spatial dependence.  The global Moran’s I 

statistic is used to check for spatial dependence in the residuals from the OLS model, and takes 

the following form (Moran 1950) 
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∑ ∑ ,

∑ ∑ , ∑
 

The localized version of the same statistic for testing the residuals from the GWR model takes 

the following form, and is mapped in Figure 7 of the Appendix. 

 	

∑ ,

∑ /
 

The Moran’s I statistic for OLS models was found to be statistically significant, ranging between 

0.165 to 0.17.  The test for GWR model residuals (see Figure 7) shows that spatial dependence 

has almost been eliminated.  This provides additional evidence for the advantage of estimating 

price-elasticities with the GWR specification. 

 

7 POLICY IMPLICATIONS AND CONCLUSIONS 

The primary objective of this study was to estimate a spatially explicit version of ethanol 

demand model.  The resulting price-elasticity estimates from the GWR model showed significant 

spatial variation in the study area. The demand for ethanol was found to be elastic, with estimates 

varying from -5.0 to -2.2 within the Twin Cities area.  Most of the estimates for rural areas of the 

state vary from -0.5 to -2.7 (although a few locations with high elasticity levels were found in the 

northern part of the state). Overall, temporal variation in price-elasticity of demand for ethanol 

was found to be less in magnitude.  However, post EISA (2007-2008) period estimates showed 

significant variation, mostly increasing in absolute value around the Twin Cities area.  The 

OLS/2SLS model estimates showed that consumers are more sensitive to relative prices.  

(13) 

(14) 
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However, the comparison with visualized GWR elasticity estimates showed that OLS model 

results can be attributed to only certain geographic areas. 

My findings of spatial differences in price-elasticity of demand for ethanol fuel have 

several useful policy implications.  Minnesota has joined several states in the Midwest in 

adopting the Energy Security and Climate Stewardship Platform Plan, an initiative designed to 1) 

produce commercially available cellulosic ethanol and other low-carbon fuels in the region by 

2012; 2) increase E85 availability at retail fueling stations in the region; 3) reduce the amount of 

fossil fuel that is used in the production of biofuels by 50%; 4) replace at least 50% of all 

transportation fuels consumed by the Midwest by locally-processed biofuels by 2025.  As part of 

that plan, the Minnesota Environmental Quality Board (EQB) is studying potential sources of 

biomass for cellulosic ethanol and other low-carbon fuels production.   

Additionally, under requirements of the Government Performance Results Act (GPRA), 

the Office of Energy Efficiency and Renewable Energy (EERE) estimates benefits of their 

portfolio of biofuel promotion programs.  Those evaluations are used to assess overall cost-

effectiveness and for the allocation of program budgets (Bernstein and Griffin 2006). The 

development of the E85 infrastructure in Minnesota is one such program.  Therefore, the 

estimates found in this study may be useful for policy determination in the region.  

As mentioned above, cellulosic biofuels development in the region is another key 

component for the regional biofuel promotion plan.  In contrast to corn-based ethanol, cellulosic 

feedstocks are geographically dispersed.  So, cellulosic ethanol costs (and thus retail prices) are 

sensitive to feedstock transportation and processed fuel (pure ethanol) distribution costs 

(Khachatryan et al. 2009).  Because of variable geographic distribution of biomass resources, 

ethanol processing plant least-cost location decisions are a key consideration.  Should the 
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processing plant be located near feedstock sources or close to end-use markets?  One component 

that is necessary for solving this spatial optimization problem is to understand consumers’ 

location-specific demand-responsiveness to price changes.  Second, knowing spatial patterns in 

household demand for ethanol is useful for decisions related to increasing the number of E85 

dispensing pumps in the state, something that I found to be negatively correlated with (existing) 

station-specific sales of E85.   

On a quantitative side, these findings have useful implications for state-level ethanol 

policy simulation experiments.  Non-spatial econometric models emphasize similarities or 

regularities of data being analyzed.  In contrast, spatially disaggregated estimation approach 

helps to reveal differences across the study area.  Alternative fuel policy simulation requires 

consideration of a range of price-elasticity estimates to be used in a calibration.  The use of 

disaggregated data in this study allowed obtaining more detailed estimates, which can be used in 

policy simulations with more certainty.  

It is worth mentioning several limitations of this study.  Although, this investigation aims 

to reveal spatial differences in the price-demand relationship, it is geographically bounded. 

Availability of ethanol fueling stations and price differences outside of Minnesota’s borders may 

influence sales volumes observed in this data.  Additionally, a portion of E85 sales can be 

attributed to households not residing in Minnesota (since many E85 stations are close to major 

interstate highways).   

In future research, I plan to simulate ethanol policy effects on environmental emissions 

reduction in Minnesota.  From a methodological perspective, for future research it will be useful 

to develop and use a weighting scheme that accounts for both temporal and spatial effects 

simultaneously (i.e., spatiotemporal weighting matrix).  In a spatiotemporal framework, spatial 
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weights work in a same manner (e.g., decreasing the weights based on the distances between 

locations, or based on the number of nearest neighbors), however, the temporal weight gives 

more weight to more recent events, and gradually decreases the weights for previous years. 
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APPENDIX 

 

Table 4: The distribution of E85 service stations in the U.S. (as of September 2009) 

State 
Number 
of E85 

Stations 
State 

Number 
of E85 

Stations 
State 

Number 
of E85 

Stations 
Minnesota 351 N. Dakota 31 Idaho 5 
Illinois 192 Tennessee 29 Connecticut 4 
Iowa 123 Arizona 26 Louisiana 4 
Wisconsin 121 Florida 26 Mississippi 4 
Indiana 112 Pennsylvania 26 Utah 4 
Missouri 95 N. Carolina 17 DC 3 
Michigan 91 Washington 15 West Virginia 3 
S. Carolina 85 Kentucky 14 Massachusetts 2 
S. Dakota 80 Maryland 14 Delaware 1 
Colorado 76 Nevada 14 Montana 1 
Ohio 63 Alabama 11 Alaska 0 
Nebraska 48 New Mexico 11 Hawaii 0 
California 40 Oklahoma 11 Maine 0 
Texas 40 Arkansas 8 New Hampshire 0 
Georgia 37 Oregon 8 New Jersey 0 
New York 35 Virginia 8 Rhode Island 0 
Kansas 33 Wyoming 6 Vermont 0 

Total 1928            

Source: U.S. Department of Energy, Alternative Fuels and Advanced Vehicles Data Center. 
http://www.afdc.energy.gov/afdc/fuels/stations_counts.html (Updated 09/24/2009) 
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Figure 6: Geographically Weighted Regression - Local R-squares Map 
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Figure 7: Localized Version of Moran’s I Statistic for GWR Model 
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Figure 8: Spatial distribution of price-elasticity of demand for ethanol in Minnesota (2000-2008) 

a) 

 

 

Note: The parameter estimates for the 2000-2002 period were derived using a specification that 
does not include vehicle stock variable (since vehicle stock restricts the data to 2003-2008).  
Those maps were included to show dynamics of elasticities for the entire period. 
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b) 
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