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Introduction  

Conventional field cropping systems have been criticized as being unsustainable 
because they contribute to on-farm and off-farm environmental degradation, and 
are often economically uncertain. Methods to increase environmental and economic 
sustainability are needed. There is a critical need to develop management 
technologies to maximize yield and crop quality yet improve environmental impacts 
on soil and water resources. A long-term cropping system experiment has been 
established to evaluate the sustainability of reduced-till, and conventional till 
cropping systems in irrigated rotations. The major focus of this research is to 
evaluate the sustainability of the irrigated production systems by measuring 
agronomic performance, soil quality, nutrient dynamics, soil biological activity and 
trace gas fluxes (CO2, N2O, CH4). One objective is to determine the mechanisms 
controlling carbon and nitrogen cycling and trace gas fluxes under reduced tillage in 
irrigated cropping systems.  

Overview of Literature 

Soils are the largest pool of carbon (C) in the terrestrial environment (Jobbagy and 
Jackson, 2000; Schlesinger, 1990, 1995). The amount of C stored in soils is twice the 
amount of C in the atmosphere and three times the amount of C stored in living 
plants (Schlesinger, 1990, 1995; Kimble and Stewart, 1995). Therefore, a change in 
the size of the soil C pool could significantly alter current increasing atmospheric 
CO2 concentrations (Wang et al. 1999).  

Carbon stored in soils is derived from litter and root inputs, while losses result from 
microbial degradation of organic matter (OM), eluviation, and erosion (Entry and 
Emmingham, 1998).  As an ecosystem approaches maturity, maximum carbon 
sequestration potential is controlled by climate, topography, soil type, and 
vegetation (Van Cleve et al., 1993; Dewar, 1991; Harmom et al., 1990).  At 
equilibrium the rate and amount of C added to the soil via vegetation are equal to 
the rate and amount of C lost through OM degradation and other pathways 
(Henderson, 1995). 

Within limits, soil C increases with increasing soil water and decreases with 
increasing temperature (Wang et al., 1999). The effect of soil water is much greater 
than the effect of soil temperature (Hontoria et al., 1999; Liski et al., 1999). 
Increasing water within temperature zones can increase plant production and, thus, 
C input to soils via increased plant litter and root production (Liski et al., 1999).  
Land-use changes can impact the amount of C stored in the soil by altering C inputs 



CSANR Research Report 2010 – 001     Climate Friendly Farming 

Ch. 18 Irrigated GHG Introduction Page 2 

and losses. Conversion of native vegetation to agricultural cropping systems has 
resulted in substantial C transfer to the atmosphere and loss of native vegetation to 
lower the equilibrium levels of C in soil (Lal et al.,1999; Wang et al.,1999; 
Cambardella and Elliot,1992; Johnson 1992). 

Irrigation can increase plant production and economic viability of agriculture in arid 
and semi-arid environments where plant growth is limited by available water. 
Irrigation also increases C input to soils via increased litter and root production. 
However the potential of irrigation to cause a net increase of C storage is tempered 
by C loss as CO2 emitted to the atmosphere as a result of (i) fertilizer manufacture, 
storage, transport, and application, (ii) pumping irrigation water, (iii) farm 
operations such as tillage and planting, and (iv) dissolved carbonate in irrigation 
water (West and Marland, 2002; Schlesinger, 1999).  The CO2 released during 
fertilizer production of 336 kg N ha-1 yr-1 is approximately 167 kg C ha-1 yr-1 

(Schlesinger, 1999). Carbon dioxide released from pumping irrigation water in the 
U.S. ranges from 126 kg C ha-1 yr-1, when using fossil fuels to 266 kg C ha-1 yr-1 when 
using electricity (West and Marland, 2002). In addition, C may be lost as CO2 from 
irrigation water itself.  Irrigation water in arid and semi-arid regions often contains 
as much as 1% dissolved Ca and CO2.  When water is applied to basic soil, CaCO3 can 
precipitate, depositing some C into the soil but causing a net release of CO2. If 
irrigation water containing 0.05 g L-1 dissolved Ca is used to irrigate crops enough to 
increase  plant C by 2000 g C m-2 yr-1, the net CO2 released was calculated to be on 
the order of 8.4 g C m-2 yr-1 (Schlesinger, 1999).  

However, with more sustainable farm management practices, it is possible to reduce 
the amount of CO2 emitted to the atmosphere or even sequester substantial 
amounts of C from the atmosphere for the next 30 to 50 years (Entry et al., 2002). 
Farm management practices such as conservation tillage and erosion control have 
reduced the amount of CO2 emitted to the atmosphere in studies in both Canada and 
the U.S. (West and Marland, 2002; Janzen et al., 1997; Paustian et al., 1997; 
Rasmussen and Collins, 1991). Intensively managed irrigated crop or pasture lands 
have potential for C gain through the use of improved grazing regimes, improved 
fertilization practices and irrigation management (Follett, 2001; Bruce et al., 1999). 
Figure 18.1 shows increases in soil C resulting from conversion of native shrub-
steppe to irrigated agricultural production in the Columbia Basin of Eastern 
Washington. 

The impact of land use changes on C sequestration were studied in southern Idaho 
on soils similar to those found in Eastern Washington. Four sites with long term 
cropping histories were identified: Native sagebrush vegetation (NSB), irrigated 
moldboard plowed crops (IMP), irrigated conservation-chisel-tilled crops (ICT), and 
irrigated pasture systems (IP). Using the C loss from CO2 emitted as a result of 
fertilizer production, farm operations, and CO2 lost via dissolved carbonate in 
irrigation water over a thirty years period, the potential of irrigation of arid and 
semi-arid land to increase C storage in soils was assessed (Entry et al., 2002). Total 
ecosystem C was greater in the order of IP>ICT>IMP>NSB before adjustment for 
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input-related CO2 emissions (Table 18.1), however after this adjustment, C in 
ecosystems was greatest to least in the order IP > ICT > NSB > IMP. This is due to 
IMP managed crops requiring more farm operations than NSB.  Entry et al. (2002) 
estimated that converting NSB to IMP would cause a net loss of 0.15 kg C m-2 over a 
30 yr period, but converting NSB to ICT or IP over the same period would produce a 
net gain of 0.80 kg C m-2 or 3.56 kg C m-2 respectively (Table 18.1). 
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Figure 18.1. Impact of irrigated agriculture on percent organic carbon in soils of the 
Columbia Basin, WA. 

 

Table 18.1. Organic C in soils, aboveground biomass and C emitted during 
agricultural operations. From Entry et al., 2002. 

 Carbon present   Net carbon gain 
 
Vegetation Soil‡ 

Aboveground
§ Site 

Carbon 
emitted¶ Soil‡ Site 

  -------------------------------- kg C m-2 -------------------------------- 
Native sagebrush 5.91c 0.42a 6.34c 0.00d 5.91c 6.34c 
Irrigated moldboard 
plow crops 7.29b 0.00c 7.29b 1.10a 6.19b 6.19c 
Irrigated conservation 
till crops 8.01b 0.00c 8.01b 0.87b 7.14b 7.14b 
Irrigated pasture 10.14a 0.05b 10.19a 0.29b 9.85a 9.90a 
†In each column, values followed by the same letter are not significantly different as determined by 
the least square means test (P 0.05), n = 30. ‡ Values of organic C stored in soils are based on the 
Walkley–Black procedure. § Carbon in soils, aboveground vegetation, and on the sites at the present 
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time. ¶ Estimated C emitted in production of fertilizer, fuel consumption in farm operations, and via 
irrigation water over a 30-yr period. 

Converting IMP managed land to ICT or IP would increase the potential for C 
sequestration and simultaneously would reduce erosion, water pollution, and air 
pollution, while causing only modest economic impact to landowners and few 
socioeconomic issues (Entry et al., 2002).  

The amount of C stored in native arid shrub-steppe vegetation (NSB) and irrigated 
agricultural systems are similar throughout the USA as well as worldwide (Entry et 
al., 2002; Bowman et al., 1999; Collins et al., 1999; Amthor et al., 1998; Potter et al., 
1998; Rasmussen and Parton, 1994; Schlesinger, 1997). The data obtained from 
these studies were used to calculate potential C storage for irrigated agriculture in 
the Pacific Northwestern USA, the Western USA, and worldwide over a 30-yr period. 
Entry et al. (2002) estimated a gain over 30 yr of 1.5 Mg C ha-1 if IMP managed land 
was converted to NSB or 9.5 Mg C ha-1 if converted to ICT. Using this value they 
calculated that 8.6 x 107 Mg C, which is 0.15% of the total C emitted in the next 30 
yr, could potentially be sequestered in irrigated agricultural soils in the Pacific 
Northwestern U.S. Irrigated lands produce approximately twice as much plant 
biomass as rain-fed agricultural production systems (Bucks et al., 1990; Howell, 
2000). Using this assumption, the conversion of 1 ha rainfed crop land to irrigated 
crop land could allow the retirement of 1 additional ha of rainfed crop land back to 
native vegetation. 

A substantial reduction of atmospheric CO2 could be attained if policy makers and 
agricultural experts recognize the potential benefit of land and water management 
strategies. Lands could be more purposely used for their greatest good, be that food 
production, carbon storage, native habitat, or other uses.   
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