How Big is the Fruit Growing Footprint ?

WASHINGTON STATE

World Class. Face to Face.

Yakima Valley

David Granatstein WSU-Center for Sustaining Agriculture and Natural Resources

WSHA Annual Conference, December 2007

WASHINGTON STATE

World Class. Face to Face.

Outline

- Definitions
- Food miles, transport energy
- System energy, GHGs
- Life Cycle Assessment
- Closing thoughts

LifeCycles, Victoria, BC

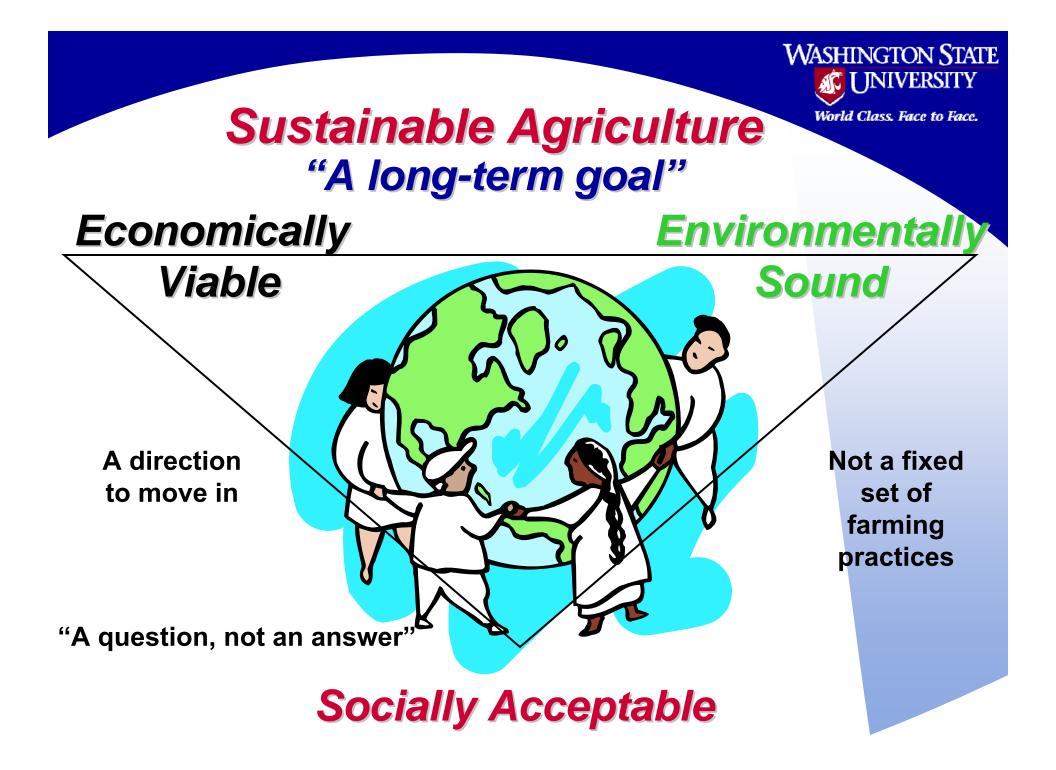
Sustainability

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

"Meet the needs of today without reducing ability of future generations to meet their needs"

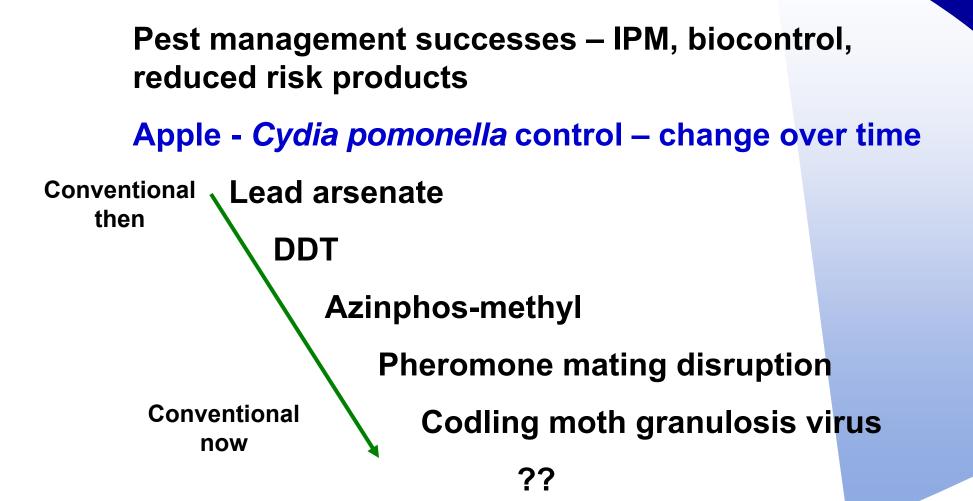
Try to balance:

- Economic
- Environment
- Social



Better to say "more sustainable"

Easier to define what is not sustainable


And now energy – what will sustainability mean in a post-petrol world?

Can agriculture be sustainable if the rest of society is not?

Sustainability is Relative

Sustainability Issues

- Environmental -

Pesticides

Soil erosion

Water quality, quantity

Energy

Atmosphere (e.g. methyl bromide, GHGs)

Biodiversity, habitat

Loss of farmland, urbanization

WASHINGTON STATE

World Class. Face to Face.

INIVERSITY

What is a footprint ?

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

A measure of the impact of a system, practice, or product on one or more environmental factors; need a reference point

Food miles – ignores production energy, different transport forms

Energy use – renewable or not; primary or embedded; input/output ratios

Other non-renewables – mined minerals; fate?

Footprint cont'd

Emissions – GHG, odor, acid rain, toxins (pesticides)

WASHINGTON STATE

World Class. Face to Face.

I INIVERSITY

- EIQ (NY) Apple: Conv. 938, IPM 167, Organic 1799
- EIR (WA) Apple: Conv+MD 2893, IFP 2211, Organic 466
- Protected Harvest Toxicity Units per acre

Carbon footprint – specifically CO₂ and/or other gases in CO₂e

Life Cycle Assessment (LCA) – air, water, energy, biodiversity, ... social

Footprint cont'd

Ecological footprint – the amount of resource area needed to support a given lifestyle

- 2003 ave. global biol. capacity 1.8 ha/person;
- US footprint 9.6, Switzerland 5.1, China 1.6

Many qualitative programs – set a threshold of practices

 Food Alliance – pest management, soil & water, safe and fair working conditions, biodiversity

Footprint only measures negatives; need to include positives.

Apple

Small inherent footprint

Plant seed; water (rain or irrigate); pick fruit; eat; throw away core

As we add management, we add footprint:

- tractors to plant trees;
- irrigation piping and pumps;
- bins, CA storage, packing lines, boxes;
- trucks for transport;
- waste disposal

Compare to car: everything has a footprint -Metal, glass, plastic, paint, fuel, paved road

WASHINGTON STATE

Transport Energy

WASHINGTON STATE

World Class. Face to Face.

	Energy ¹ (Gal/ton-mile)		
Hwy truck	0.0228		
Rail	0.0023 0.1x		
Water	0.0037 0.16x		
Air	0.1584 7x		

Emissions² (<u>g CO₂e/MT-km)</u> 270 21 0.08x 130 0.5x 1,101 4x

 ¹ DOE EERE, 2004
² Environment Canada, 2002; ave. 1990-2000

Transport Energy

Suburban - 4000 lb,16 mpg town; 4 mi RT to store; purchase 5 lb apple in 50 lb groceries 0.031 gal/ton-mile 0.0050 gal/lb fruit

Semi-truck – 48,000 lb net freight; 6 mpg 0.004 gal/ton-mile

<u>To NYC market</u>	<u>Fuel</u>	<u>Gal/Ib fruit</u>
NY 200 mile	34 gal	0.0007
MI 1000 mile	167 gal	0.0035
WA 2800 mile by rail	467 gal 155 gal	0.0097 0.0035

WASHINGTON STATE

New Zealand Response to Food Miles

Compared apple, onion, dairy, and lamb produced in NZ or EU alt.; sold in UK

Used LCA approach to calculate energy use and CO₂ emissions

NZ apples use 1/3 energy of UK apples for production; less CO₂ emissions for NZ apples purchased in UK

Caroline Saunders et al., 2006, Lincoln University, NZ

WASHINGTON STATE

INIVERSI

NZ vs UK Apple Study

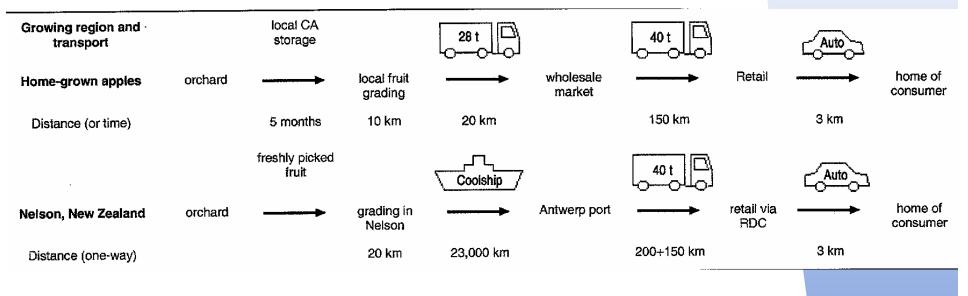
WASHINGTON STATE UNIVERSITY World Class. Face to Face.

	Energy (MJ/MT apple)		Emissions (kg CO ₂ /MT fruit)	
	NZ	UK	NZ	UK
Farm	950	2,961	60.1	186.0
Direct energy	573	2,337	29.8	152.1
Indirect (N,P,pesticides,)	300	624	24.7	33.8
N fertilizer	104	362	4.8	18.1
Equipment, buildings	78	?	5.6	?
Post-harvest	2,030	2,069	124.9	85.8
Cold storage UK 6 mo	-	2,069	-	85.8
Ocean ship (17.8K km)	2,030	-	124.9	-
Total	2,980	5,030	185.0	271.8

1 gal diesel = 147 MJ

(Saunders et al., 2006)

NZ vs German Apples



World Class. Face to Face.

Braeburn apple

NZ – 90 MT/ha, no storage, ocean transport

DE – 40 MT/ha, 5 month CA storage, local transport

27% more energy required for imported fruit

(Blanke & Burdick, 2005)

NZ vs German Apples

	Primary energy (MJ/MT fruit)			
	NZ		Germany	
Fruit production	2,100	28	2,800	48
Local transport	139	2	69	1
Initial cooling	86	1	86	1
Ocean trans. or Storage	2,836	38	810	14
Packaging	650	9	650	11
Truck to wholesale	276	3	93	2
Truck to retail	262	3	235	4
Consumer (4 km)	1,150	15	1,150	20
Total	7,499	%	5,893	%

(Blanke & Burdick, 2005)

WASHINGTON STATE

UNIVERSITY

WASHINGTON STATE

World Class. Face to Face.

Why the Difference ?

	Energy (MJ / MT apple)			
	Saunders		Blanke	
	NZ	UK	NZ	GER
Farm	950	2964	2100	2800
Postharvest		2069		810
Transport	2030		2836	
	2980		2199*	3610
Distance (km) from NZ to		17,840*		23,000
Schlich et al. 2003				14,000

WASHINGTON STATE AC I INIVERSITY Full Cost of World Class. Face to Face. Food System - UK <u>per person/yr</u> \$2,014 Cost of food basket **Total externalities** 8% **\$ 160** % of externalities Ag production 19 **Domestic transport** 29 Sea, air transport < 0.01 Shopping 16 Waste disposal < 0.01

(Pretty et al., 2005)

What About WA to NY ?

	Energy (MJ/MT apple)	
	WA	NY
Farm	950	2,961
Direct energy	573	2,337
Indirect (N,P, pesticides, …)	300	624
N fertilizer	104	362
Equipment, buildings	78	?
Post-harvest	5,147	2,297
Cold storage 6 mo	2,069	2,069
Semi-truck (WA 2750 mi)	3,078	228
Total, by truck	6,097	5,258
Total, by rail (1041 MJ/MT)	4,060	5,258

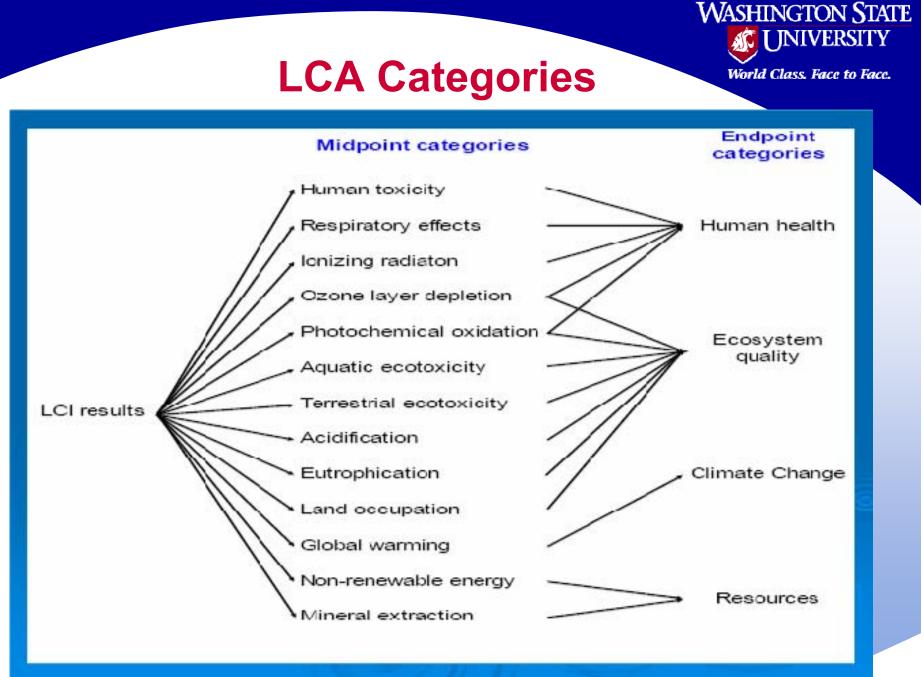
WASHINGTON STATE

Life Cycle Assessment Apple production system comparison – Rita Schenck, IERE, 2001

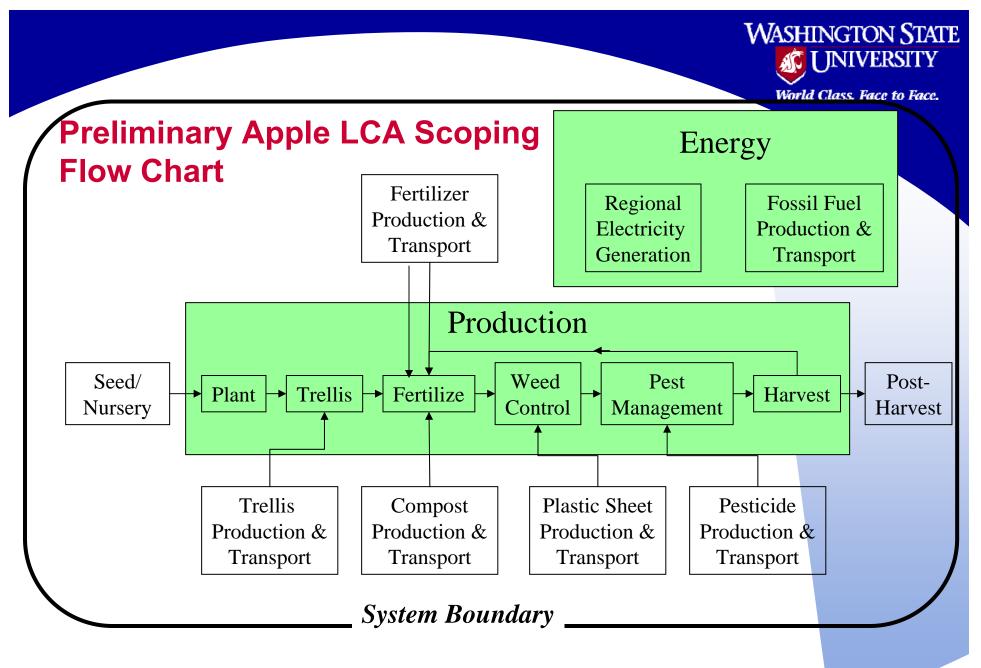
- Depletions: fossil fuel, water, mineral
- Land use / biodiversity
- Air GHG, acidification, smog, airborne toxicity, ozone depletion

WASHINGTON STATE

World Class. Face to Face.


I INIVERSITY

Water - Aquatic toxicity, eutrophication


Extensive literature, many groups, some international harmonization

American Center for Life Cycle Assessment http://www.lcacenter.org/

Institute for Environmental Research and Education http://www.iere.org/sustain/LifeCycle.htm

(Yrigoyen & Castells, 2006)

Energy is an input to almost all processes; for simplicity, its arrows are not included in this diagram

(IERE, 2001, unpublished)

Social Indicators

WASHINGTON STATE

World Class. Face to Face.

Corporate policy Equality of opportunities Freedom of association Access to potable water **Social security** Intellectual property **Satisfaction Product quality Respect for privacy**

<u>Social LCA</u> Qualified working time - paid work time

Health & safety - lethal, non-lethal accidents

Humaneness - no child labor

(Makishi et al., 2006)

Let's Do A WA Tree Fruit LCA

Customers requesting (requiring) this information

Do our own defensible study

Focus areas: Production – lower energy like NZ ? Storage – hydropower advantage for energy source Transport – how big a piece is it? Options? Water – sustainability issues

Closing Thoughts

There is no "right" way

Every method has assumptions

May be more useful in relative terms – change over time, comparison studies

Need a reference point

Big challenges – energy, water, pesticides

Need to account for positives, not just negatives

Acknowledgements: Rita Schenck, IERE

WASHINGTON STATE