

Sustainable Horticulture in Fruit Production

David Granatstein and Eugene Kupferman

Washington State University Tree Fruit Research & Extension Center Wenatchee, WA USA

Outline

- What is sustainable agriculture? (definition, strategies)
- Sustainability issues in fruit production
- Has fruit production become more sustainable? (IFP, organic, comparisons)
- Future sustainability

World Class. Face to Feee,

Sustainable Agriculture "A long-term goal"

Economically Viable

Environmentally Sound

A 3-legged stool

Not a set of farming practices

Socially Acceptable WASHINGTON STATE UNIVERSITY

Meet the needs of today without compromising the ability of future generations to meet their needs

World Class. Face to Face,

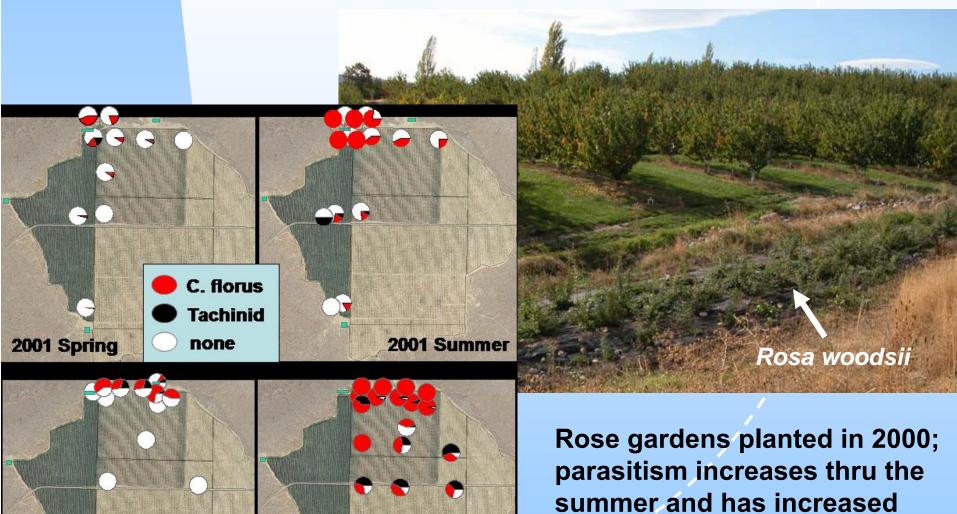
Three Major Strategies for Sustainability

- Efficiency (water, spray, nutrients)
- Substitution (IGRs, microbials for organophosphates)
- Redesign (perennial polyculture)

(McRae et al., 1990)

Albert Smith farm, southeast Minnesota

Redesigning Agroecosystems


'Pedestrian' orchard benefits:

- economic (faster returns, higher quality fruit, lower labor costs for maintenance)
- environmental (better IPM)
- social (less ladders, less worker injury)

Trade-off: more sunburn?

Redesign with Rose Gardens

2003 Summer

2003 Spring

summer and has increased from 2001-2005

Courtesy: T. Unruh

How do we measure sustainability in agriculture?

System comparison studies

- long term studies
- do they use the latest technology?

Established standards

- soil erosion (tolerable soil loss)
- water quality (10 mg/L nitrate)
- pesticide residues, worker exposure

Indices - soil quality, Env. Impact Quotient

Economics – profitability, new farmers

Social – family farms, community impacts, food quality and human health

No single unifying measure

Global Sustainable Ag Trends

Production

IPM / Biocontrol of pests

Organic farming

Water quality protection (pesticides, nutrients, pathogens)

Biodiversity enhancement on farms

Marketing

More product identity – ecolabels, wine grape sustainability code, fair trade, country of origin

Social accountability in business - SASA; sustainable business practices

Sustainability Issues in Fruit Production

- Economic -

WSU study – high density Fuji apple, 40 ha farm

Variable costs \$7350 / ha

Fixed costs \$6867 / ha

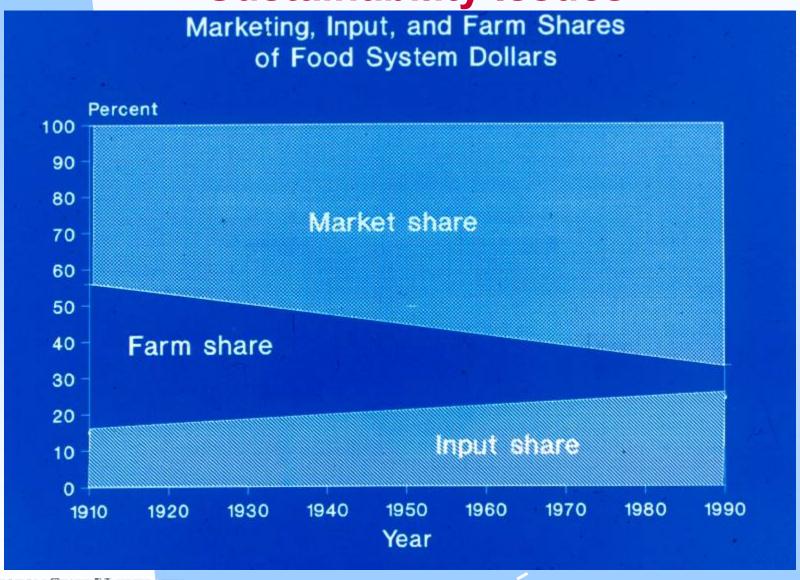
Labor \$ 3.12 / box

Total growing + harvest \$10.28 / box

Warehouse costs \$ 7.50/ box

Breakeven \$17.78 / box

Ave. price 2000 \$12.75 / box


Loss \$6916 / ha

1995-2002 – price > breakeven in 4 of 8 years

(Schotzko, 2004)

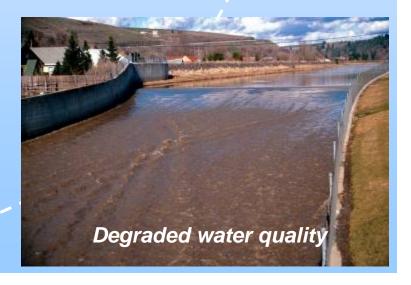
Sustainability Issues

Sustainability Issues in Fruit Production

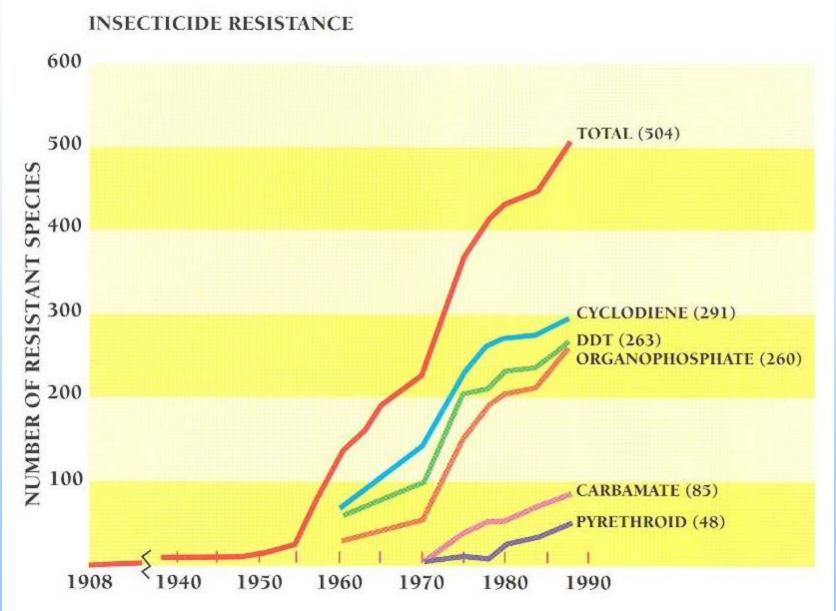
- Environmental -

Pesticides

Water quality, quantity


Energy

Atmosphere (e.g. methyl bromide)


Biodiversity, habitat

Loss of farmland, urbanization

Sustainability Issues - Environmental

(Source: US EPA)

Social Sustainability

Family farms

Rural communities

Food security

Next generation of farmers

Farm workers

Human health

Fair trade

Pest management successes – IPM, biocontrol, reduced risk products

Apple - Cydia pomonella control - change over time

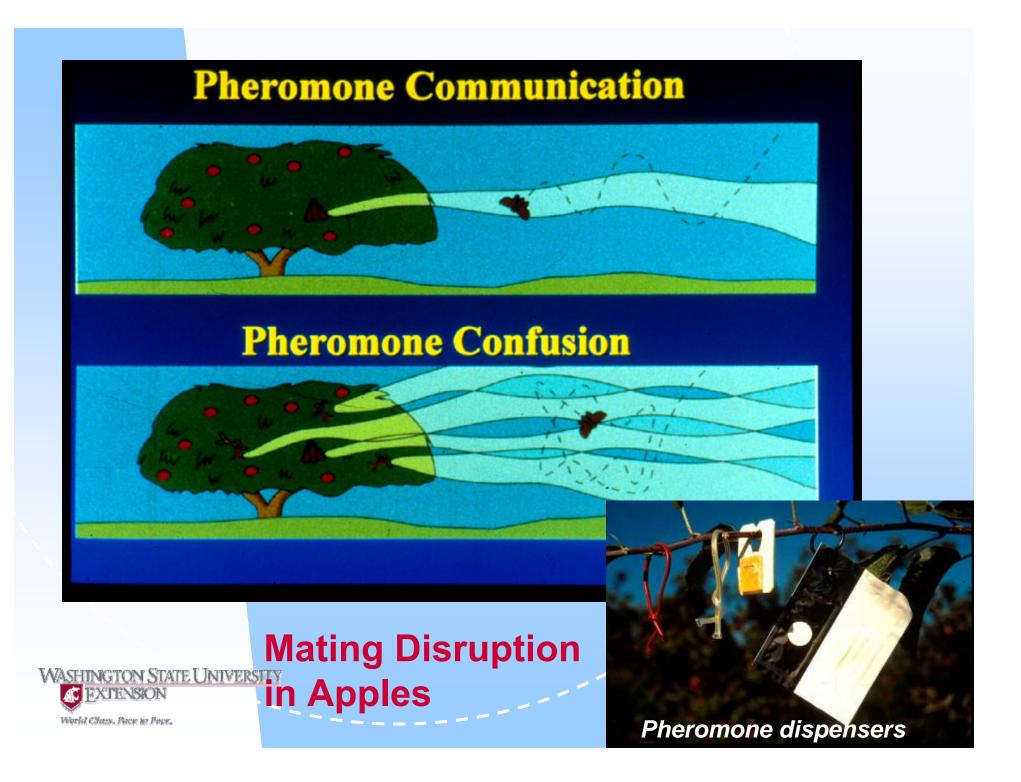
Lead arsenate

Conventional then DDT

Azinphos-methyl

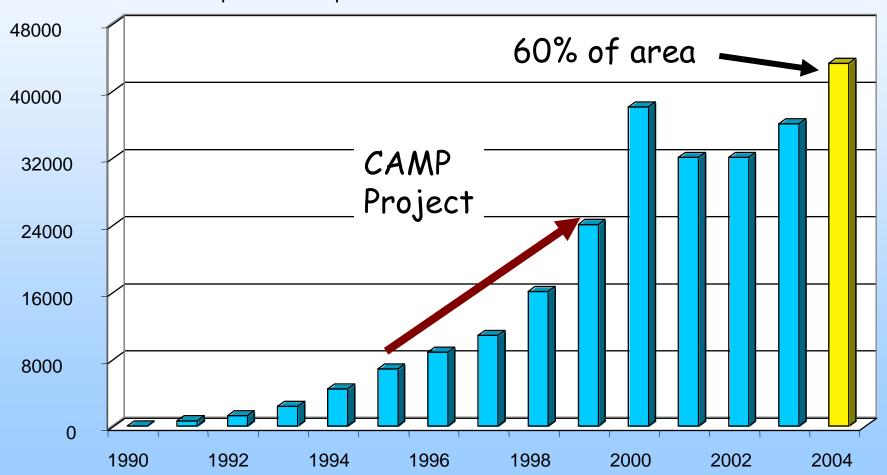
Pheromone mating disruption

Conventional now ??


IPM and Biocontrol in Washington Apples

_ 4				
Tot	'AI I	K CI	2 I	/\/r
10	aı ı	NU	a.ı	./ Y I

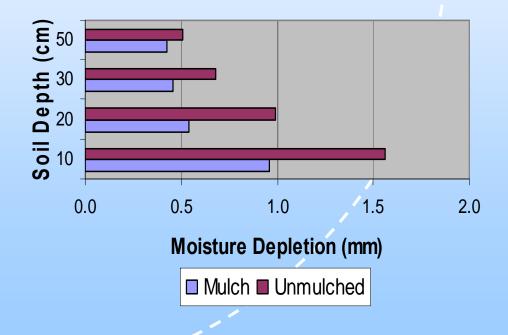
	rotal kg allingi		
Pesticide	<u> 1989</u>	<u>2000</u>	
Guthion	193,270	117,680	
Dimethoate	5,410	60	
Malathion	28,820	1,730	
B.t.	370	11,090	
Spinosad	n.a.	3,000	
Practice	% grov	vers using	
Field monitor	91	99	
Econ. threshold	37	92	
Use biocontrols	34	81	



Source: WSU IPM survey

Codling moth pheromone products uses in Washington apple and pear orchards

Total ha treated with pheromone products


Source: J. Brunner

Water conservation – micro sprinklers, drip irrigation, soil moisture monitoring, deficit irrigation

Effect of Orchard Mulching on Soil Moisture Depletion

Evaporative cooling?

US per capita fresh fruit consumption 1970-2004:

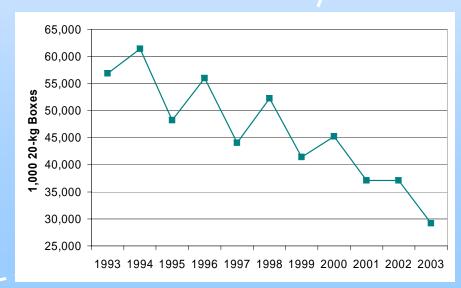
Apple – no change

Banana +48%

Orange -33%

Grape +177%

Total +24%


Greater emphasis on fruit and vegetable consumption

- 'Five A Day' campaign

Growth in pre-sliced fruit – meets the convenience

factor, healthy snack food

New fruit varieties, more focus on flavor

World Class. Face to Face,

Two established approaches:

Integrated Fruit Production (IFP)

Organic farming

Similarities:

- Emphasize bio-intensive management, whole system
- Use guidelines, standards, certification, label identity
- Restrict materials

Differences:

- IFP focus on IPM, organic focus on soil
- Synthetics generally not allowed in organic, fewer tools
- Organic standards more rigid, less adaptable to locale
- Organic more widely known by consumers, higher price
- No GMOs in organic

Integrated Fruit Production (IFP)

Framework, guidelines and principles developed by IOBC (1993)

- Crops
- Nutrient management
- · Soils
- Biological diversity and landscape
- Pest control
- Product quality

Strong emphasis on Integrated Pest Management (IPM) and biocontrol

Many regional, national programs for pome fruit, stone fruit, grapes

Integrated Fruit Production (IFP) Experience

 Driven by Europe (40% of apple and pear acreage in IFP, 1994), markets demanded IFP fruit

Sandwich' systen

- Exporters to Europe developed IFP programs (NZ, S. Africa, Argentina)
- Europe has good infrastructure for IFP
- IFP has helped reduce production costs
- No price premium to growers; government

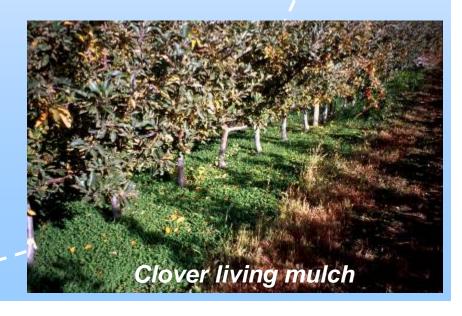
subsidies are key

Integrated Production in the US

- Confusion, competition with "organic"
- Provides a positive message about agriculture
- Some price premiums in other foods (beef, vegetables)
- Some success with market access for fruit (Food Alliance, Salmon Safe)
- Increased interest in wine grapes
- Infrastructure not developed

Impacts of IFP

- Pesticide reduction (50%, New Zealand)
- Resistance management, more biocontrol (apples, Italy)
- Water conservation (50%, USA)
- Improved yield (+26-45%, Canada)
- Reduced costs (bananas, Costa Rica)



Organic Agriculture

- Accounts for ~2% of food sales, <0.01% of ag land in US
- Over 10% of ag land is organic in some European countries, >5% of food sales
- Organic food sales growing at 20% per year
- Legally binding certification systems worldwide
- Strong consumer recognition, unclear understanding
- Focus on soil health, natural materials
- Fewer tools, often less durable or effective

Organic Fruit Production

Sensitive to agroclimatic conditions; often less pest and disease problems in semi-arid regions

Higher cost: fertility, pest control, labor

Yields, quality – similar to conventional in Washington; up to 50% reductions in more humid regions

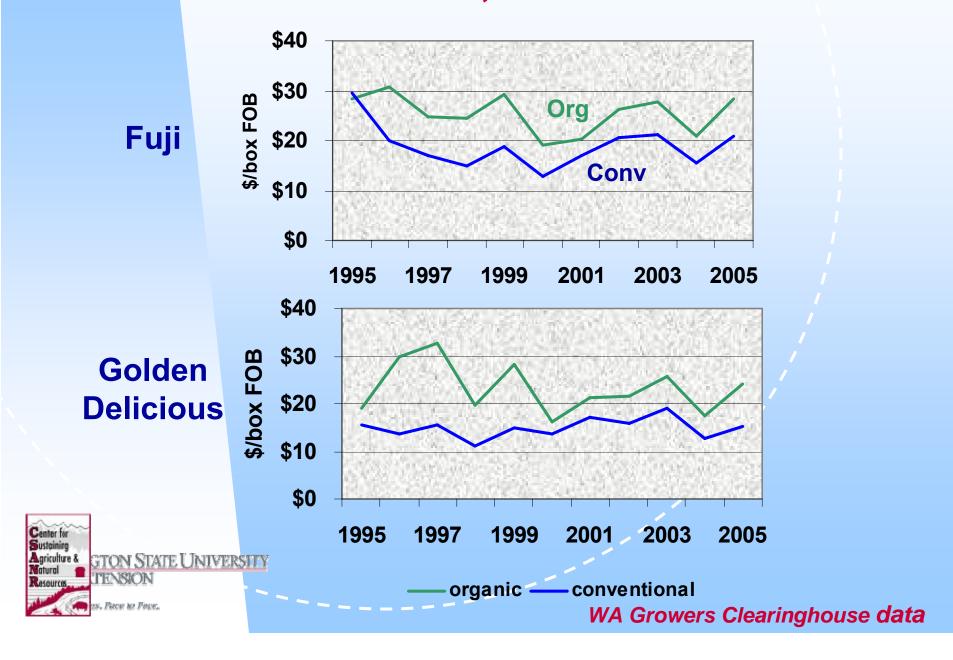
3000

2500

IPM, biocontrol progress benefits organic

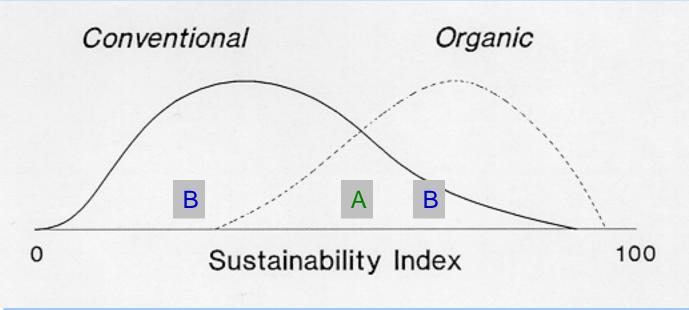
Need price premium; but often more profitable

Requires higher level of management



□ Certified ■ Transitional

Organic apples in WA


Apple Price Trends – Washington State, USA

Organic and Sustainability

- Organic farms vary in their sustainability, as do conventional
- Organic farm A might be more or less than conventional farm B
- Organic farms are more likely to be more sustainable than conventional

Hypothetical distribution of farms on a sustainability index

The European Experience

Indic	cators	++	+	0	-	
	Ecosystem		X			
Soil	(erosion, OM)		X			
	and Surface ater (leaching)		X			; ;
Cli	mate and Air			X		
	t and Output ter, energy use)		X			
Animal	Welfare and Health			X		
Quality	of Produced Food		X			

Legend: ORG compared to CONV: ++ much better, + better, 0 same, - worse, -- much worse

Stolze et al, 2000: The Environmental Impacts of Farming in Europe

Nitrate Leaching Rates - Europe

Authors

Reduction in nitrate leaching from organic farms compared to conventional

>50% Smilde (1989)

>50% Vereijken (1990)

57% Paffrath (1993)

40% (sand) Blume et al. (1993)

0% (loam)

50% Reitmayr (1995)

40% Berg et al. (1997)

64% Haas (1997)

Sustainable Ag Trial – California

Conv. 2 yr, Conv. 4 yr, low input, organic – 12 year study

Yield difference never more than 10%

Cover crop – increased summer infiltration 2x, decreased winter runoff >10x

Conv. Lost 10x more applied N than low input, 5x more than organic

	N input	Loss of applied
	<u>(kg/ha)</u>	<u>N (%)</u>
Org	1924	4.6
Low	1550	2.4
Conv 4	1827	22.3
Conv 2	1584	28.5

(Huyck et al., 2003)

Effect of apple orchard management system on sustainability indicators

WSU Orchard Systems Trial - Washington, USA

		Conv.	Integrated	<u>Organic</u>
Total energ	y input	516,489	488,661	445,328
(MJ/ha)				
Environmer	ntal impact	2,893	2,211	466
rating				
Soil quality	rating	0.70	0.81	0.83
TCSA 6th le	eaf (cm²)	28.0	28.2	28.5
Fruit yield 1	1996-99	210	205	198
(MT/ha)				
Variable co	sts (\$/ha/yr)	10,145	9,666	9,124

(Reganold et al., 2001)

Organic Orchards in the Northeast USA Pest Management Costs IFP vs. Organic Apples - 2004

		Organic
Cost category	IFP (US\$/ha)	(US\$/ha)
Spray products	\$961	\$2,198
Spray labor	\$768	\$889
Hand thinning	\$684	\$929
Cultivating		\$57
Fruit washing		\$1,754
Totals for year:	\$2,413	\$5,827

(Merwin et al., 2005)

Environmental Impact QuotientRed Delicious apple, New York State,USA Conventional IPM Organic

WASHINGTON STATE UNIVERSITY
EXTENSION

World Class. Face to Face,

938

167

1799

(Kovach et al., 1992)

Whole Farm Cumulative Net Returns (dollars per acre) 3,500 -3,000 2,500 2,000 1,500 1,000 500 91 93 95 97 99 -500 ^è -1,000 -- Con4 -- Con2 --- Low --- Org --- Org+

Sustainable Ag Trial – California

World Class. Face to Face.

(Huyck et al., 2003)

Ecolabels for Sustainable Production

Marketing sustainability:

- Know your consumer
- Clear, credible message
- Distinguish self-interest, altruism
- Benefits to growers in addition to price premium

Importance of environmental sector to consumers

(% responses very high and high)

			4
Env	Iron	mar	Ital
			ıtaı

57

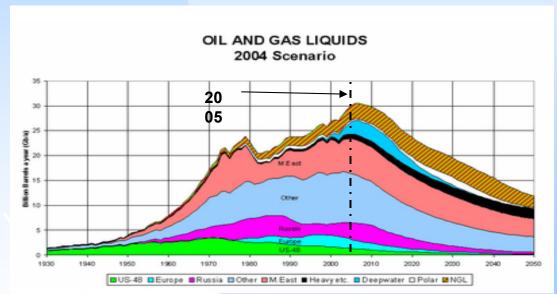
Air 22

Habitat 11

Soil 6

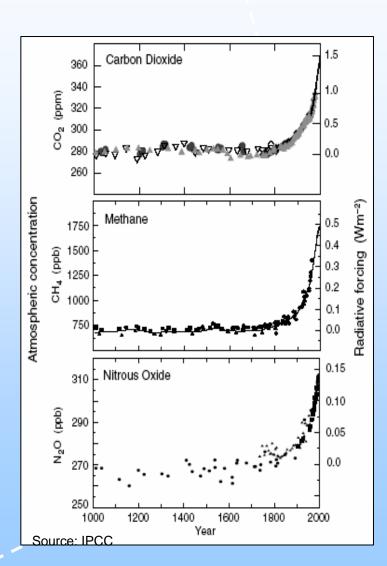
Energy 5

(Hartman, 1997)



World Class. Face to Face,

Future Sustainability


Mega-trends:

- Peak oil
- Climate change

Campbell, C. 2004

Future Sustainability

Likely trends:

- Mechanization to reduce labor
- Nutritional / nutraceutical content
- Greater importance of 'local'

Mechanical cherry harvest

- Blurring of lines conventional vs. organic more integration of good ideas
- Is IFP or Organic more sustainable?

Ultimate impact = sustainability gain x area (e.g. 100% IFP in New Zealand apple, 50% pesticide reduction; 5% organic apple in WA)

