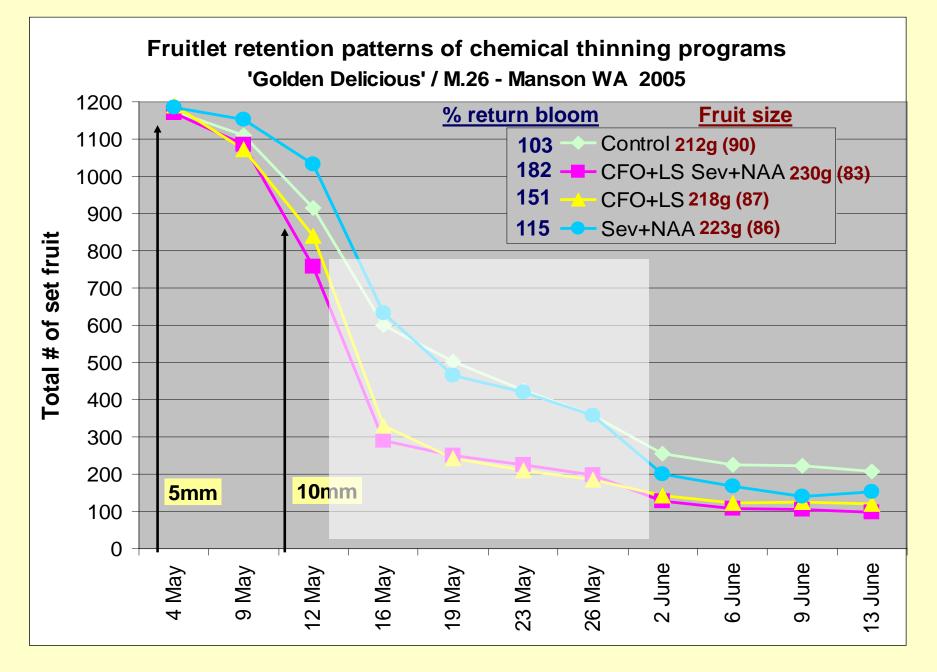
Making Money Through Tree Canopy Management: Crop Load, Fruit Size, Return Bloom & Fruit Finish

WSHA Annual Meeting 6 December 2011 Wenatchee, WA

> Tory Schmidt, WTFRC tory@treefruitresearch.com www.treefruitresearch.com

Notes on slides can be viewed by holding the cursor over the icon in the upper left corner.

CLM tools to make the big bucks!!


- Lime sulfur
- Smart hand-thinning
- Reflective fabrics
- Targeted pruning
- BA (not organic)
- Horizon technologies

CLM tools to make the big bucks!!

- Lime sulfur
- Smart hand-thinning
- Reflective fabrics
- Targeted pruning
- Set Body BA (not organic)
- Horizon technologies

Blossom thinning

WTFRC Internal Program Apple bloom thinning agents evaluated 1998-2010 (# of formulations tested in parentheses)

- ATS (3)
- Dormex
- Wilthin
- Water
- NC99 (2)
- Lime sulfur (2)
- Aliette
- ThinRite
- Cal Plex 12
- Sodium chloride
- Ju VOE
- New Zealand soap (3)

- Crocker's Fish Oil
- TetraSul
- Kaligreen
- Molasses
- Vinegar
- Tergitol
- Urea
- Ethrel
- Raynox
- Corn oil
- Canola oil
- Sulforix

- Soybean oil
- NAA
- GenThin
- Clove oil
- Potassium metabisulfite
- Potassium sulfate
- Matran
- Salicylic acid
- MaxCel
- Exilis Plus

WTFRC Internal Program

Oils/carriers for apple thinning agents evaluated 1998-2010 (# of formulations tested in parentheses)

<u>OILS</u>

- Crocker's Fish Oil
- VOE (Ju formulation)
- Saf T Side Oil
- JMS Stylet Oil
- Wilbur Ellis Supreme Oil
- Omni Supreme Oil
- Orcal Freedom Oil (4)
- Corn oil
- Soybean oil
- Canola oil

<u>OTHER</u>

- Hi Crop Liquid Fish
- Kelly Green Fish
 Emulsion
- Pacific Natural Fish Emulsion
- Latron
- Regulaid (3)
- Silwett
- Silgard
- Exit
- GSL 90

CHEMICAL THINNING GOALS

#1 Minimize production costs – indicated by fruit set/blossom cluster

#2 Optimize retention of high quality fruit
 (size, color, shape, finish, sugars, acids, etc.)
 – indicated by fruit size

#3 Promote consistent annual cropping by maintaining proper balance of vegetative and reproductive growth – indicated by return bloom

Proven chemical bloom thinners of apple

Incidence of results significantly superior to untreated control WTFRC apple chemical bloom thinning trials 1999-2010

Treatment	Fruitlets / 100 blossom clusters	Harvested fruit diameter	Return bloom ¹
ATS	15 / 57 <mark>(26%)</mark>	10 / 60 <mark>(17%)</mark>	4 / 52 <mark>(8%)</mark>
NC99	15 / 32 (47%)	7 / 34 (21%)	2 / 28 <mark>(7%)</mark>
Lime sulfur	25 / 54 (46%)	12 / 48 (25%)	9 / 47 (19%)
CFO + LS	61 / 106 (58%)	26 / 97 <mark>(27%)</mark>	21 / 93 <mark>(23%)</mark>
JMS + LS	14 / 24 <mark>(58%)</mark>	8 / 23 <mark>(35%)</mark>	4 / 22 (18%)
WES + LS	14 / 27 (52%)	4 / 26 <mark>(15%)</mark>	4 / 26 (15%)
ThinRite	6 / 16 (38%)	0 / 17 <mark>(0%)</mark>	0/3

¹ Data from 2010 trials not included

Proven chemical postbloom thinners of apple

Incidence of results significantly superior to untreated control WTFRC apple chemical postbloom thinning trials 2002-2010

Treatment	Fruitlets / 100 blossom clusters	Harvested fruit diameter	Return bloom ¹
BA	2 / 18 (11%)	0 / 19 (0%)	0 / 19 (0%)
Carb + BA	29 / 78 (37%)	9 / 77 (12%)	9 / 73 (12%)
Carb + NAA	12 / 52 (23%)	7 / 52 (13%)	5 / 50 (10%)
BA + NAA	5 / 15 (33%)	3 / 15 (20%)	1 / 11 (9%)
Carb + NAA + Ethephon	0 / 5	0 / 5	2 / 5
Carb + NAA + BA	0 / 8	0 / 8	3 / 8

¹ Data from 2010 trials not included

Proven chemical bloom thinners of apple

Incidence of results significantly superior to untreated control WTFRC apple chemical bloom thinning trials 1999-2010

Treatment	Fruitlets / 100 blossom clusters	Harvested fruit diameter	Return bloom ¹
ATS	15 / 57 <mark>(26%)</mark>	10 / 60 <mark>(17%)</mark>	4 / 52 <mark>(8%)</mark>
NC99	15 / 32 (47%)	7 / 34 (21%)	2 / 28 <mark>(7%)</mark>
Lime sulfur	25 / 54 (46%)	12 / 48 (25%)	9 / 47 (19%)
CFO + LS	61 / 106 (58%)	26 / 97 <mark>(27%)</mark>	21 / 93 <mark>(23%)</mark>
JMS + LS	14 / 24 <mark>(58%)</mark>	8 / 23 <mark>(35%)</mark>	4 / 22 (18%)
WES + LS	14 / 27 (52%)	4 / 26 <mark>(15%)</mark>	4 / 26 (15%)
ThinRite	6 / 16 (38%)	0 / 17 <mark>(0%)</mark>	0/3

¹ Data from 2010 trials not included

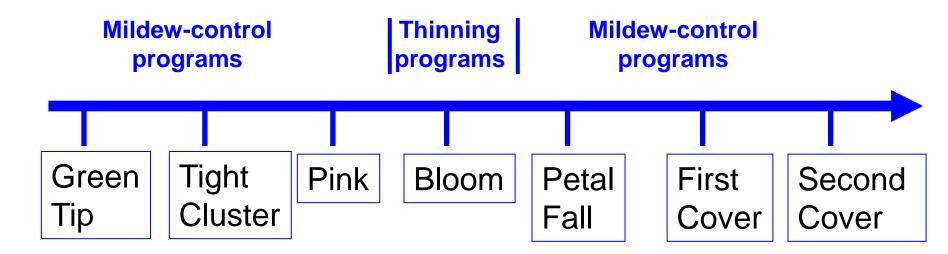
BLOOM THINNER EFFECTS ON CROP LOAD GOLDEN DELICIOUS/ M.7 – ROYAL CITY, WA 2006

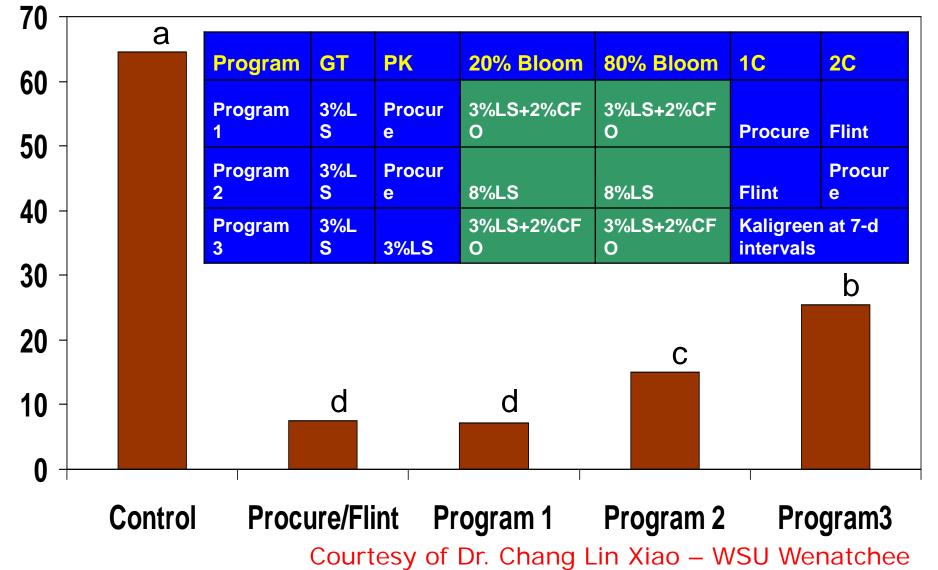
	Fruitlets/ 100 clusters	% Blanks	% Singles	% Doubles	Weight (g)	Box Size
ATS	15 ns	88 ns	9 ns	3 a	191 ns	100
CFO+LS	17	84	16	0 b	197	97
LS	18	83	17	1 ab	194	98
NC99	15	87	11	2 ab	196	97
TergOpt	19	83	14	2 ab	199	96
Urea	20	83	15	2 ab	200	95
Vin+Oil	16	86	12	2 ab	196	97
VOE	18	84	14	2 ab	199	96
WES+LS	12	89	9	1 ab	187	102
Control	12	90	9	1 ab	187	102

Fringe benefits of LS

- Powdery mildew suppression (Xiao – WSU)
- Improved fruit finish
- Fire blight suppression? (Johnson – OSU)
- Reduced insect pressure?
- Multiple modes of action increase efficacy & reliability

Powdery mildew




Part 5

Evaluation of chemical thinning products in combination with fungicide programs for bloom thinning and control of powdery mildew

Courtesy of Dr. Chang Lin Xiao – WSU Wenatchee

Bloom thinning programs in combination with fungicides for thinning and mildew control

Fruit finish

Bloom Thinning – WTFRC Sample Data Fuji/MM.106, 5th leaf, Royal City WA 2003

	Fruitlets per 100 blossom clusters	% blossom clusters blanked	% blossom clusters singled	Harvest fruit diam (cm)	Relative box size	Soluble solids (% Brix)	% titratable acids	% return bloom 2004
CFO + LS	84 b	42 a	37 b	8.1 ns	80	14.4 ns	0.35 ns	12 ns
LS	77 b	39 a	47 a	8.2	77	15.0	0.35	0
NC99	80 b	41 a	42 ab	8.1	80	14.7	0.34	0
Control	101 a	31 b	45 a	8.0	82	14.3	0.31	2

Bloom Thinning – Packout Data Fuji/MM.106, 5th leaf, Royal City WA 2003

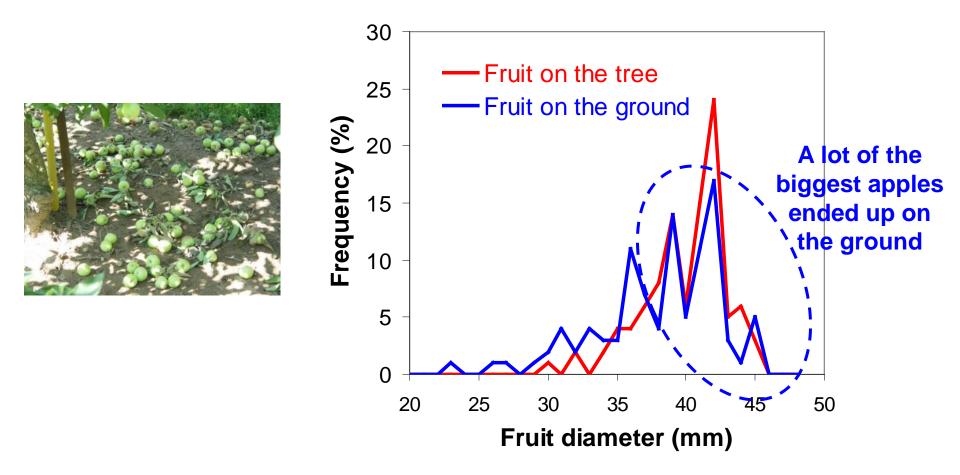
	Mean fruit weight (g)	% WAXF1 (Top grade)	% WAXF2 (2 nd grade)	% USXF (3 rd grade)	% culls
CFO + LS	228 ns	28 ns	35 ns	20 ns	17 ns
LS	229	30	32	14	24
NC99	228	31	32	14	23
Control	227	31	32	10	27

Bloom Thinning – Packout Data Fuji/MM.106, 5th leaf, Royal City WA 2003

	Total yield (lbs)	Yield/tree (lbs)	Grower net return/bin (US\$)	Grower net return/tree (US\$)
CFO + LS	28,051	84.5	372 ns	41.22
LS	28,986	87.0	359	42.80
NC99	26,726	80.7	366	38.19
Control	29,143	84.5	350	39.28

Bloom Thinning – Financial Data Fuji/MM.106, 5th leaf, Royal City WA 2003

	Grower net return/tree (US\$)	Hand-thin time/tree (min)	Hand thin costs/tree (US\$)	Spray costs/tree (inc. chemicals, labor, equip.) (US\$)	Estimated net/tree vs. control (US\$)
CFO + LS	41.22	2.8 ns	0.38	0.37	+1.69
LS	42.80	3.0	0.40	0.43	+3.19
NC99	38.19	2.8	0.36	0.25	-1.20
Control	39.28	no data	0.50?	0	

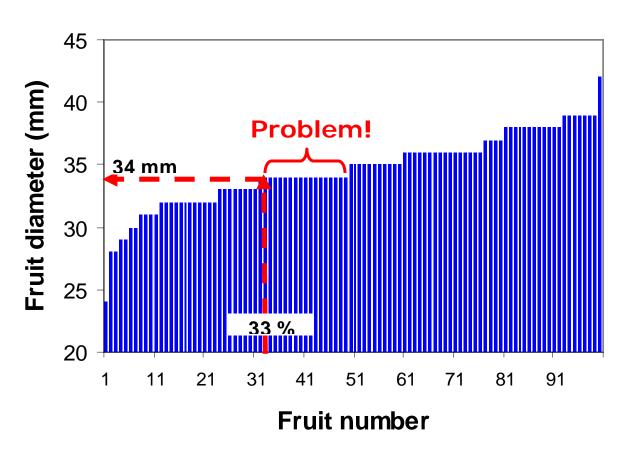

Evaluation of the 'Size' method for Hand Thinning Apples

Steven McArtney and JD Obermiller

Conventional Hand Thinning Methods

either do not consider or place a low priority on <u>fruit size</u>

Fruit size distribution of thinned and retained fruit measured 1 day after hand thinning on a commercial orchard


'Size Thinning' Method

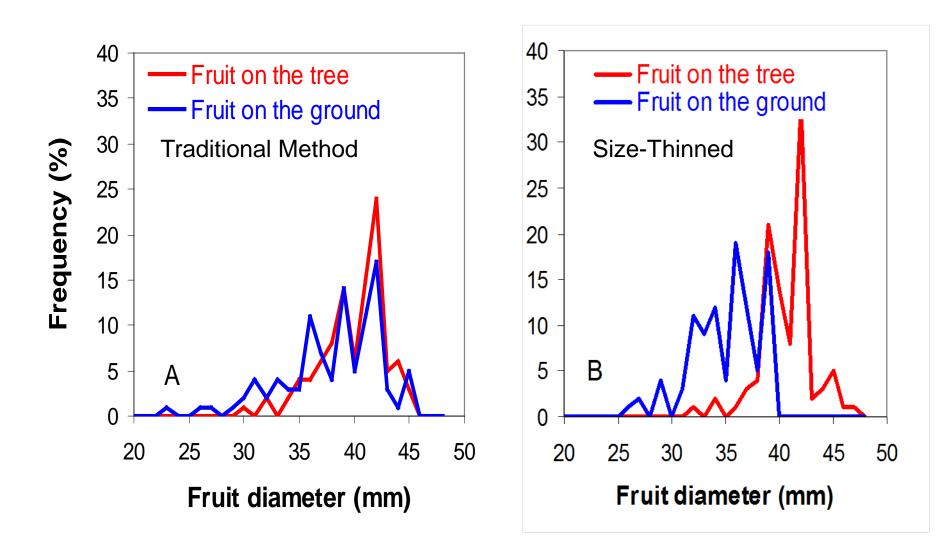
Example...

- 1. Actual crop load from counts is 450 fruit per tree
- 2. Target crop load is 300 fruit per tree 150 fruit (33%) will have to be removed from each tree to reach the TARGET CROP LOAD
- To make sure you remove the smallest 150 fruit (33%) you will need to check the diameter of the 33rd smallest fruit in the sorted size data.

'Size Thinning' Method

Example...

Hand your thinning crew a fruit that is 34 mm in diameter and instruct them to remove all fruit this size and smaller from the tree


Size Thinning achieves two things...

 it ensures that only the smallest fruit are removed, and

 it ensures the crop load target is met (without having to count!)

'Size Thinning' Method

fruit diameters of thinned and retained fruit (2008)

Fruit number, yield per tree, and mean fruit weight at harvest

Treatment	Fruit no.	Fruit wt.	Mean fruit
	per tree	(kg/tree)	wt. (g)
Unthinned	364a	52.7a	145
Hand thinned (Conventional)	231b	34.4b	151
Hand Thinned (Size)	218b	34.9 b	160
P-value	.0013	.0016	.119

Reflective Fabrics

Fruit yield trends 2007-2010 Honeycrisp/Sup.4 – Selah, WA

Year	Treatment	Yield (kg/tree)	Fruit set (per tree)	Fruit wt (g)	WAXF (%)
2007	Extenday	98 a	496 ns	206 a	60 ns
	Control/Mylar	86 b	469	182 b	59
2008	Extenday	39 a	202 ns	219 a	79 a
	Control/Mylar	35 b	198	187 b	67 b
2009	Extenday	99 a	510 a	193 a	31 a
	Control/Mylar	71 b	442 b	174 b	14 b
2010	Extenday	97 a	472 a	228 a	52 ns
	Control/Mylar	70 b	361 b	209 b	53

Mean cumulative yield effects of repeated season-long application of Extenday across all WTFRC apple trials 2005-2009

	Fruit set (per tree)	Fruit wt (g)	Total yield (kg/tree)
Year 1 (n=12)	+9%	+6%	+15%
Year 2 (n=7)	+24%	+2%	+26%
Year 3 (n=4)	+17%	+8%	+23%

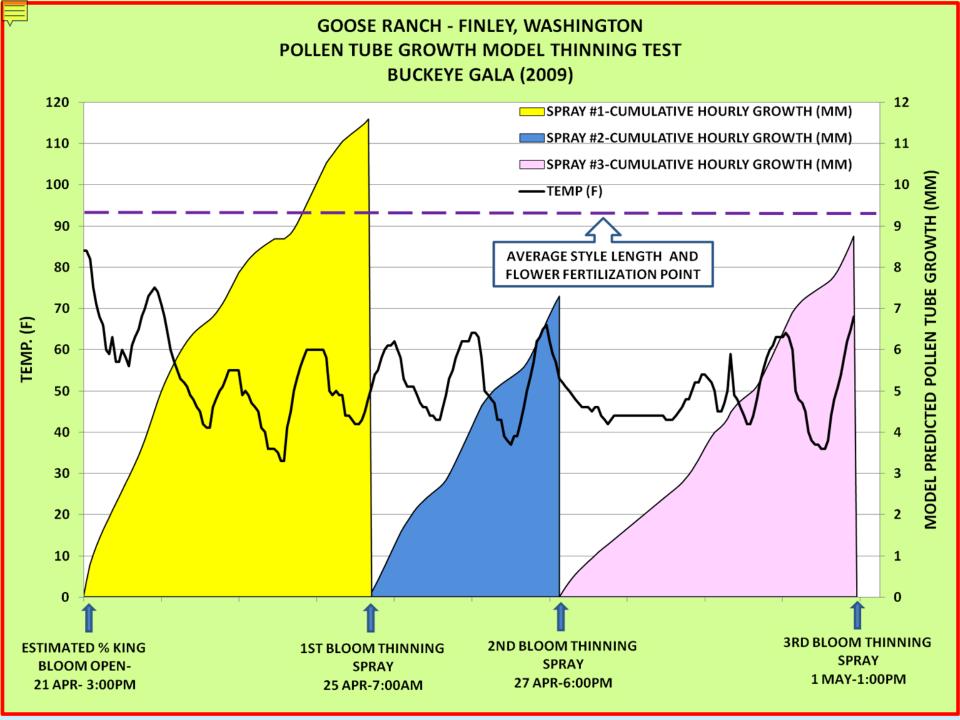
10% wt difference = 1 box size

Reflective material effects on fruit color Gala/M.9 – Othello, WA 2009

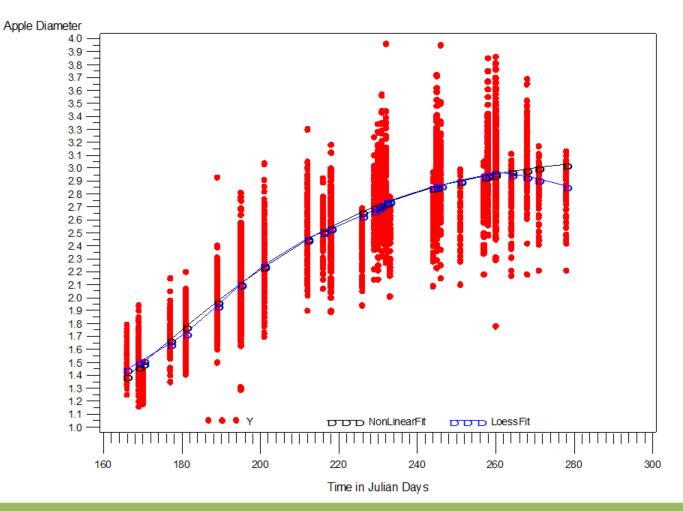
Dollars make sense?? Per acre costs for single block usage (est.)

	Extenday	Mylar
Material cost	2800	170
Initial install	150	60
Subsequent install	30	na
<u>Removal</u>	<u>40</u>	<u>20</u>
5 year total	\$3300	\$1250
Target fruit yield	+ 30-40%	+ 5-10%

What's on the horizon?


Models!

Apple bloom phenology & fruit growth modeling project



- WTFRC & WSU Extension
- Phenology: 11 Red Delicious, 11 Gala, 9 Cripps Pink
- Fruit growth: 11 Red Delicious, 10 Gala, 9 Cripps Pink
- Beta testing on AWN in 2012?

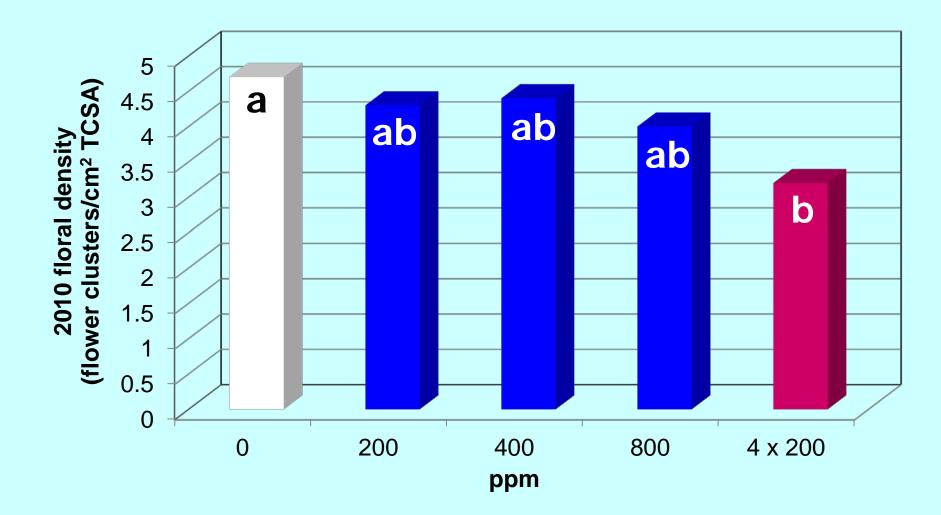

Preliminary models

Figure 1: Plot of Apple growth over Time with our non-linear fit and loess fit

GA₃ effects on return bloom Gala/M.26 – George, WA WTFRC 2009

Tractor mounted mechanical thinner

Hand held mechanical thinner in cherries

12

