Diversity and ecology of pollinators in the Pacific Northwest with emphasis on native bees

Eugene Miliczky
USDA-ARS
Yakima Agricultural Research Lab.
Wapato, WA

Native pollinators include:

- Certain birds: ex. Hummingbirds
- Certain bats: Pacific Northwest??
- Insects: many flower visiting insects
 - Wasps many visit flowers for nectar
 - Flies flower flies, bee flies, et al.
 - Butterflies & Moths some specialized pollinators
 - Beetles some feed on pollen & flower parts; can be destructive
 - Many others are incidental flower visitors
 - Bees most important, abundant, specialized

Why are bees such good pollinators?

- Require large quantities of pollen to feed their young
- Most bees are hairy
- Pollen collecting/transport structures
- Specialized pollen collecting behavior
- Flower fidelity is well developed
- Bees just plain work hard: "Busy as a bee"

Bees vs. wasps: What's the difference?

Bees

- Tend to be hairy and at least some hairs are branched or feathery
- Lack reflective hairs on the face
- Pollen is the protein source used to feed the young

Wasps

- Relatively non-hairy and all hairs are simple
- Many have
 reflective hairs on
 the face
 (Sphecidae)
- Protein source for the young is insects and spiders

Bee species richness

- World fauna: >17,500 named
 species (2007); ca. 20,000 in total
- 7 large groups (families) currently recognized: 6 occur in PNW
- North American fauna: ~3000 spp.
- Pacific Northwest: ~ 1000 spp.
- Washington: 500+? (undercollected)
- Yakima River Canyon: >100 spp.

Bee ecology I: Social vs. solitary

Social

- Honeybee, bumblebees, sweat bees
- live in colonies
- Queen is primary egg-layer
- Workers (females)
 maintain the nest
 and collect food
- Males only interested in sex

Solitary

- ~85% of all bees –
 15,000+ species
- Each female constructs her own nest and rears 10 or so young
- Males only interested in sex

Bee ecology II: solitary bee life cycles

- Most species have 1 generation/year
- Adults actively flying for only 5 or 6 weeks/year; rest of year spent in inactive state
- Period of adult activity corresponds with flowering of important host plant(s)
- As a result we see a turnover of species over the course of the season
- Reproductive output: ~1 offspring per day; 5-20 in a female's lifetime
- Larval food: a mix of pollen and nectar
- Overwintering: as an adult or mature larva in the natal cell

Bee ecology III: Solitary bee nests

- Ground nesting: construct cells in the soil, majority of species: ex. Andrena - 1400+ species, Perdita - 600+ species
- Above-ground nesting: significant minority
 - pre-existing tunnels in wood (beetle borings)
 - pithy stems of sumac, elderberry, etc.
 - rotten wood/logs a few species
 - free standing: made of mud or plant material
 - opportunistic use of nail holes, electrical outlets, human provided trap nests

Bee ecology IV: Long-tongued vs short-tongued bees

- Based on the structure and relative length of the tongue or proboscis
- Long-tongue bees: honeybee, bumblebees, digger bees, leafcutters
- Short-tongue bees: sweat bees, sand bees, membrane bees
- Tongue length determines whether a bee can reach nectar in a flower

Bee ecology V: floral relationships

Pollen use:

- Polylectic bees (pollen generalists)
 collect pollen from plants in several
 (many) plant families. Many species.
- Oligolectic bees (pollen specialists)
 collect pollen from a single genus or
 several related genera of plants. Many
 species.
- Monolectic bees utilize a single species of plant for pollen. A few species?

Bee ecology VI: pollen bees and cuckoo bees

- Pollen-collecting bees: these species are typical, hard-working bees.
- Cuckoo (cleptoparasitic) bees:
 - Female lays egg in nest of suitable host bee
 - Cuckoo larva kills host egg or larva & feeds on pollen stored by the female host bee
 - Cuckoo adults and larvae are specialized for the parasitic way of life
 - Hundreds of species of cuckoo bees
 - Cuckoo & host may or may not be related