

Enhancing BC in organic orchards: Using HIPV lures to characterize, monitor, and manipulate natural enemies

Vincent P. Jones, Shawn A. Steffan, David R. Horton, Nicholas J. Mills and Peter W. Shearer

Cogent Thoughts and Platitudes

- What you don't know can hurt you
- Perception influences management
- It's never as easy as it looks
- Timing is everything
- Location, location, location
- Size matters
- There is no such thing as a free lunch

What are HIPVs?

- Herbivore Induced Plant Volatiles
 - As plants are damaged, volatile bouquet changes
 - -Signals changes in secondary plant chemistry
 - Act as a kairomone to attract natural enemies
- Studies in the literature typically address
 - Behavior and chemistry
 - Use HIPVs to concentrate natural enemies in a particular area to improve BC

What you don't know can hurt you...

- NE monitoring methods are inefficient
- Beating Trays
 - Samples insects only from the part of the plant disturbed by the beat
 - Snapshot of the population at one particular point in time
 - Highly affected by diel activity patterns
 - Particularly poor for good fliers

HIPV traps: We have the technology.....

- Accumulate captures over time
 - Not sensitive to diel activity patterns
- Draw from entire active space
 - Within tree or between trees

Primarily good for adult stages

Monitoring Dictates Perception and Management

46 vs 153 days

Same 5 Orchards Sampled	Beating Tray	Attractant Traps
Sampling Frequency	2-3 times/wk	1 time per week
Sample Period	March-October	March-October
No. Samples per orchard	50 trees	4 traps

Diversity of NE Attracted

- Attractant effects
 - Must be replicated over time, space, and crops
 - -NE presence is driven by availability of suitable prey/hosts
 - Some very specific, some broad range species attracted

Lacewings*

- Syrphid flies*
- Campylomma bug
- Stethorus
- Western Flower thrips
- Wide range of parasitoids

- 20 families
- 29 confirmed general
- >54 morpho species
- 15 confirmed species

It's never as easy as it looks....

Mixtures can add power

Or not.....

- Minimize disruptive management tactics during key periods
- If absolutely needed, during periods without NE present, can use harsher tactics
- Provides a tool to optimize management programs
- Working on NE phenology in apple, pear, walnut, and sweet cherry

Estimating Management Effects using HIPVs

Using HIPV to enhance BC by concentrating NE

- Size Matters
 - Small plots can potentially draw NE from surrounding habitat
 - What do you do when you are the major part of the landscape – blocks of 100+ acres?
- There is no such thing as a free lunch:
 - Where do natural enemies come from?
 - Are NE's the correct ones and will they feed on the pests in the tree?

Why HIPV's are important to natural enemies

- Distribution of pests is clumped at lower densities
- The damaged areas are where HIPV's are released
 - NE search is concentrated in damaged area
- At high densities pests are broadly distributed
 - HIPV's are widely dispersed
 - NE search is not improved measurably by HIPV

"Season-long dispenser in every tree" effects?

Effect	Issues to consider
Increased overall mean NE density	

Alternatives to Season-Long Approaches

- Put the lures in a particular area for a short time only
 - Jump start functional and numerical response
 - Need to check the sex ratios attracted
 - -Specificity of the lure
- Use lures to "herd" NEs from place to place
 - If treating certain areas, attract NE from those areas temporarily as a moveable refuge
 - Need to determine the active space of the lures

Summary

- HIPV's provide the same potential for NE that pheromone traps for pests provide
 - Defining phenology
 - Status & complexity of NE food web
 - Potential for BC or disruption
 - Comparison of different tactics
 - Moving NE spatially to improve BC
- Still basic and applied work needed

Acknowledgements

- This work funded by SCRI grant project number WNP07368 from USDA-NIFA
- Matching funds from
 - Washington Tree Fruit Research Commission
 - California Walnut Board
 - Washington State University
 - Oregon State University
 - UC Berkeley
 - USDA-ARS

