

G. H. Neilsen, D. Neilsen, T. Forge, and E.J. Hogue Pacific Agri-Food Research Centre, Summerland, BC, Canada VOH 170

Washington State Horticultural Association, Dec. 4th , 2013 Wenatchee, WA

Agriculture and Agri-Food Canada

Organic Matter benefits

- direct addition of nutrients
- improved soil structure (aggregation and aeration)
- improved nutrient and water retention (buffering)
- site of intense biological and biochemical activity

CATION EXCHANGE CAPACITY me 100g⁻¹ (cmol (+) kg⁻¹)

Sandy Loam (Osoyoos)	4.8
Sandy Loam (Skaha)	12.5
Silt Loam (Penticton)	18.0
Ogogrow compost	89.7
Dairy solids (vermicompost)	175.3

Organic amendments can have very high cation exchange capacity (CEC) relative to soils and materially increase the CEC on low CEC soils.

Compost Nutrients

- vegetation/poultry manure/straw
- aerated, turned, 65 C.
- C (39.3 %)
- 2.5% N, 2.3% P, 2.7% K,
- Ca (6.1%), Mg (0.9%),
- Zn (417ppm), Cu (7 ppm)
- Annual applications based on 50 lbs N/acre, assuming annual 30% N mineralization; requires 12 tons compost per acre.

Compost N availability

	N (%)	C/N	Available Yr 1 (%)
Broiler litter	3.84	9.5	42 (27-54)
Dairy solids	1.99	19.8	6 (-2-16)
Pelleted fish	9.40	4.5	77

Soil Structure

Plays a role in water infiltration, retention, and plant availability; aeration; ease of root extension

Particulate soil carbon (>53μ)

This measurement can change faster than total soil carbon and be an early indicator of increasing soil organic matter.

Water and nutrient retention

Organic amendments such as compost can have beneficial effects on water relations and nutrient availability (CEC=cation exchange capacity).

Soil Organic Matter (%) in Orchards and Vineyards; Okanagan BC, 2007

- Average = 3.4%
- Range = 0.35% 11.5%
- Samples from 228 sites

Method: Incorporated amendment

Compost banded in the tree planting row

Method: Surface mulch

Method: Localized application

Treating known problem areas

Effect of land leveling on soil properties

	O/M	рН	EC	N	Р	K	Ca	Mg
	%		_			lb/acre		
Undisturbed	3.6	6.3	0.38	40	99	1000	3418	484
Disturbed	1.1	8.3	5.2	57	9	467	8150	1000

Disturbed areas can benefit greatly from organic soil amendments

Amendment experiment

- 'Braeburn' / M.26
- planted 1998
- Pre-plant amendment of sandy soil to 0.3 m depth
- N, P fertigation

Effects of composted biosolids, clay minerals and mulch on 'Braeburn'/M.9

	Total shoot growth	Leaf P
	(m)	(% DW)
Check	7.1c	0.24c
Ogogrow (O)	9.2a	0.32ab
Vermiculite (V)	7.2c	0.23c
O + Zeolite	8.5ab	0.34a
O + Bentonite	7.8bc	0.30b
O + V	8.9a	0.30b

Amendment/mulching Naches, WA

- 'Braeburn'/M.9
- 4' x 8.5' spacing
- Replant site
- Planted 2000
- 2 levels of N
- 2 levels of irrigation (drip)
- Control vs organic soil amendment vs surface mulch.

Naches Experiment results (5 yr)

Mulch

Increased tree size, cumulative yield, fruit size (3 yr) Decreased fruit firmness (1 yr)

'Amendment'

Minor growth and yield effects

Over-riding replant effect

Mulch or amendment did not control replant disease

Long Term Mulching and Amendment Trial, PARC-Summerland, 1994-2003

Experimental design

'Spartan' * M.9 (1994)

1.25m x 3.5m spacing

7 treatments, RCB, 5 replicates

4 tree plots

Daily drip irrigation

N fertigation (70 – 100 kg N/ha/yr)

Gravelly sandy loam

Plant and Soil Response to Mulches

						Soil pro	perties	
Treatment	TC: (cn			eld tree)	Total C	Total N (%)	Extract. P	Infiltr'
	·	·	. •	·	(%)	, ,	(ppm)	(L/hr)
	1997	2001	1997	2001		20	01	
Check	4.6c ^z	11.5d	3.2c	14.7b	1.0c	0.10bc	40b	5.50b
GVRD	4.5c	11.6d	4.5bc	14.7b	1.9a	0.18a	205a	14.6ab
Paper mulch (PM)	7.4a	17.4a	6.5a	20.4a	1.3bc	0.12b	26b	10.0b
Geotextile	5.8bc	12.4d	5.2ab	16.0b	0.9c	0.09c	29b	3.40c

²Means with a column followed by the same letter are not significantly different at the 5% level according to Duncan's multiple range test.

TCSA=trunk cross sectional area

GVRD=Vancouver composted biosolids; Paper mulch=shredded white office paper; Geotextile=black woven polypropylene 'weed fabric'

Grower spray-on mulch experiments

- Apples on M.9; 4 sites
- Sandy loam soil
- 5 yr trials

Results: Improved performance (yield, growth) relative to herbicide control in 3 orchards.

Exception (yr 4-8), Ambrosia site

Cline et al. 2011. HortTechn. 21:398-411.

Spray-on Mulch at a K-deficient site

• Gala/M.9, 6 yrs

Results:

- SM had bigger trees but similar yield to herbicide controls
- None of the amendments prevented K deficiency (1.1%)

Experimental organic block PARC, Summerland, BC

'Ambrosia'/B.9, planted Apr 2006, 1 x 4m spacing

Orthic Brown silt loam

Experiment designed to compare common inrow management used by organic growers, as well as a conventional treatment and an unirrigated treatment

Soil Analysis

- 0-10cm
 - Total & Particulate [>53μm] C, N. (LECO-CNS)
 - Microbial C [fumigation]. (Wu et al. 1990)
 - Bray P & Phosphatase activity. (Tabatabi 1994)
 - OAc-Exchangeable K

0-30cm

Nematode (genus) community. (Forge and Kimpinski 2007)

Soil carbon

Tree vigor

Measured as trunk cross sectional area at end of each growing season. Bark mulch trees showed greater growth., while black plastic weed fabric had the least.

Organic Trial Leaf Nutrients (2006-2011)

Treatment	Leaf N (% dw)	Leaf K (% dw)
Compost/ Tillage	2.44ab	1.97b
Alfalfa Mulch	2.50a	1.98b
Bark Mulch	2.38b	2.10a
Black Plastic	2.46 a	1.91c
Significance	*	***

Organic Trial Fruit Yields

Treatment	2011	2012	2011-12
Compost/ Tillage	6.9a	4.6	11.5
Alfalfa Mulch	5.9ab	6.1	12.0
Bark Mulch	5.3b	6.8	12.1
Black Plastic	7.4a	4.9	12.4
Significance	*	NS	NS

Improved Performance Final Report Card

- High density apple on dwarfing rootstock
- Randomized, replicated trials
- Multi-year studies

	Sites	Success	Batting average
Surface Mulch	12	8	.667
Incorporated amendment	16	5	.313

Other practical points

- Mulch/amendment buffered against accidental water stress (reduced fruit size)
- Mulch or amendment were ineffective on fertile sites, with strong fertigation programs, with high frequency irrigation, or even excessive irrigation (N leaching)
- Mulch or amendment were ineffective when an important limitation was not affected by treatment (e.g. replant disease, K deficiency)

By late summer, tree roots grew to the very surface of the soil and sometimes into the mulches.

Thank you

