Soil management impacts on orchard soil health and tree productivity

Ian Merwin, Mike Brown, Michelle Leinfelder, Amaya Atucha, Greg Peck & Shengrui Yao

> Dept. of Horticulture Cornell University, Ithaca, NY

Long-term Effects of Soil Management?

18-Year Study of four Groundcover Management Systems (GMS) in tree rows of a NY apple orchard

Treatments:

- ➤ Mowed red fescue (Festuca rubra) turfgrass
- Hardwood Bark Mulch, renewed every 2 to 4 yrs
- Glyphosate in May + July each year (Post-Herb)
- RoundUp + Karmex + Solicam each May (Pre-Herb)

Groundcover Management System (GMS) effects on:

- > Orchard soil physical conditions?
- >Tree physiology and yield?
- > Agrichemical leaching and runoff?
- > Nutrient availability and recycling?
- > Rhizosphere microbial communities?
- >Apple replant disease problems?

Layout of the experimental site (DTS) at Lansing, NY

Orchard Description

- 'Royal Empire' on M.9/MM.111 rootstocks
- Planted in 1992 at 3 by 6 m spacing, vertical axe
- > Irrigation as needed, with micro-sprinklers
- 20-24 trees per treatment replicate (9 by 20 m plots), 3 replicates
- > Soil is silty clay loam, 4% org. matter, 6-8% slope
- Under typical commercial IPM program
- ➤ Published results in Merwin et al. (1996), Atucha et al. (2011), and Yao et al. (2005 and 2007)

Mowed Sod Bark Mulch

Cumulative Tree Growth in four GMSs from 1992-2009

TCSA=trunk cross sectional area

Annual Yields/Tree in each GMS

Annual yields of Empire Apple (1994-2010) in a Groundcover Management Systems (GMS) trial in Lansing, NY

Cumulative Fruit Yields per tree in the Four GMSs, 1992 to 2010

Cumulative yields of Empire Apple (1994-2010) in a Groundcover Management Systems (GMS) trial in Lansing, NY

Soil fertility after 15 years under four orchard GMSs

Treatment	P (mg/kg)	K (mg/kg)	Mg (mg/kg)	Ca (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Al (mg/kg)	Cu (mg/kg)	рН	OM (%)	CEC (cmol/kg)
Grass	0,56 b ¹	168	447	1102 b	1.5	17.0	13.1	0.30	6.5 b	5.1 b	16.8 b
Post-H	0.67 b	184	411	957 b	2.5	17.2	19.1	0.63	6.3 b	4.7 b	16.2 b
Pre-H	0.60 b	.159	420	1058 b	1.5	16.8	14.7	0.70	6.4 b	4.5 b	15.3 b
Mulch	1.57 a	168	481	2630 a	1.7	24.3	8.1	0.77	7.2 a	8.6 a	22.5 a
Critical different	e 0.64	36	105	438	1.8	8.7	10.7	0.58	0.4	2.0	4.6

¹Means followed by different letters were significantly different at P=0.05.

Cumulative microbial respiration in GMS soil samples (Yao et al, 2005)

Soil microbial communities in root-zone of trees after 15 years in each GMS

- > Sample topsoil within tree rows around roots
- > Analyze soil nutrient availability, pH, OM, CEC
- Use selective media and culture plating to estimate populations of soil fungi and bacteria in each GMS
- Extract microbial RNA from tree row soil samples
- Amplify RNA with PCR primers targeting the 16S rRNA gene for bacteria, and the ITS (internal transcribed spacer) region for fungi
- Use Denaturing Gradient Gel Electrophoresis (DGGE) to fingerprint soil microbes in each GMS

Fungal DNA fingerprints in rootzone soil from each GMS (Yao et al, 2007)

Nitrate-N (ppm) in drainage outflows from four GMS treatments (2000)

Nitrogen Budgets for each GMS (Atucha et al, 2011)

	Groundcover Management Systems (GMSs)								
	PreHerb		PostHerb		Mowed Sod		Bark Mulch		
	(kg N ha-1yr-1)		(kg N ha-1yr-1)		(kg N ha-1yr-1)		(kg N ha ⁻¹ yr ⁻¹)		
	2005	2007	2005	2007	2005	2007	2005	2007	
A. EXTERNAL N INPUTS									
Fertilizer application	60	0	60	0	60	0	60	0	
Mulch Biomass N	0	0	0	0	0	0	169.2 †	84.6 †	
Rain water	0.9	1.2	0.9	1.2	0.9	1.2	0.9	1.2	
Irrigation Water	1.8	0.03	1.8	0.03	1.8	0.03	1.8	0.03	
Total Inputs	62.7	1.2	62.7	1.2	62.7	1.2	62.7 (231.9)†	1.2 (85.3)†	
B. INTERNAL N FLUXES									
Recycling surface vegetation	15.1	19.5	20.9	21.5	23.6	27.3	25.1	24.4	
Soil N mineralization	16.7	18.4	20	20.9	22.1	24.2	29.8	31.9	
Leaf litter Fall	16.4	10.7	11.6	14.2	10.3	15.4	10.3	15.9	
Pruned wood	4.1	11.5	5.6	13.2	4.8	14.1	5.2	14.9	
Total internal fluxes 🧨	52.3	60.1	58.1	69.8	60.8	81.0	70.4	87.1	
C. N OUTPUTS									
Harvested fruit	27.7	22.9	32.9	28.1	22.0	24.8	32.4	31.2	
Surface runoff	1.7	5.0	1.3	7.7	0.6	4.9	0.5	4.1	
Subsurface leaching	12.2	2.6	13.9	2.6	12.2	3.2	15.9	3.7	
Total outputs	41.6	30.5	48.1	38.4	34.8	32.9	48.8	39	
BALANCE= (A+B)-C	73.4	30.8	72.7	32.6	88.7	49.3	84.3 (261)†	49.3 (134)†	

Apple Replant
Disease:
A "soil health"
problem usually
controlled by
preplant fumigation

Ithaca ARD project (2001-2010):
Compost, rootstock type, soil fumigation and replant tree location in or out of old tree rows
(work of Drs. Leinfelder, Yao, St. Laurant)

Old Tree Row vs. Old Grass Lane replant tree locations

Effects of preplant soil fumigation, compost, and rootstocks in replant disease orchard

Cumulative yield of Empire apple (2004-2011) in ARD site by rootstock and preplant treatments, Ithaca, NY

Fungal DNA fingerprints of root-zone soil on Cornell-Geneva vs. Malling rootstocks

The Cornell Soil Health Index as predictor of orchard productivity? (Michelle Leinfelder's PhD)

- Orchard soil health indicators correlated well with long-term tree growth, but not yields.
- Environmental aspects of orchard soil health may be more important than its effects on fruit trees (nutrient leaching, erosion, pesticide residues, etc)
- Well managed orchards can sequester substantial amounts of carbon over time, in trees and soil

CONCLUSIONS

- Soil health indices for orchards need more work!
- Bark mulch GMS optimizes soil fertility, OM, biological activity, tree growth vs. other GMSs
- Over time (18 years) apple trees adapt to different soil management systems, yields become similar
- Conventional weed-free residual herbicide GMS: <u>least</u> productive, higher nutrient leaching and runoff compared with the other systems
- Each GMS promotes a different microbial community in the root zone of apple trees
- Geneva rootstocks more tolerant of replant disease, which is a soil health related problem