

Flower Biology and Biologically-based Integrated Fire Blight Management

Dr. Larry Pusey USDA-ARS, Wenatchee, WA

WSHA Annual Meeting, Dec. 6, 2011

Notes on slides can be viewed by holding the cursor over the icon in the upper left corner.

Why biological control?

- Replace antibiotics
- Complement other approaches
- Advantage of multiplication and spread

Diagram of apple flower

Apple stigma

Stigma

Erwinia amylovora (Ea) on flower stigma

CFU per day (x 100,000)

Flower stigma age and bacterial colonization

Ea and beneficial bacteria on 'Gala' stigmas related to flower age

Hypanthium

Hypanthium

Water relations and Ea in hypanthium

Population (Log CFU)

Disease (%)

Growth of microbial strains in synthetic nectar (25% sugar)

Survey of natural microbial populations on 'Gala' flowers

Bacteria and yeast genera on apple flowers

Bacteria

Acinetobacter

Actinobacterium

Aeromicrobium

Arthrobacter

Bacillus

Cellulomonas

Clavibacter

Curtobacterium

Erwinia

Kocuria

Microbacterium

Micrococcus

Pantoea

Paenibacillus

Pectobacterium

Pseudomonas

Ralstonia

Rhodococcus

Rhizobium

Stenotrophomonas

Variovorax

Yeasts (or yeast-like)

Aureobasidum

Cryptococcus

Pichia

Rhodotorula

Starmerella

Crab apple laboratory model

Screening microorganisms for potential use in biological control

Bacteria and yeast genera on apple flowers

Bacteria

Acinetobacter

Actinobacterium

Aeromicrobium

Arthrobacter

Bacillus

Cellulomonas

Clavibacter

Curtobacterium

Erwinia

Kocuria

Microbacterium

Micrococcus

Pantoea (1)

Paenibacillus

Pectobacterium

Pseudomonas (2)

Ralstonia

Rhodococcus

Rhizobium

Stenotrophomonas

Variovorax

Yeasts

(or yeast-like)

Aureobasidum (2)

Cryptococcus (1)

Pichia

Rhodotorula

Starmerella

*Red indicates highest ranked groups in screening assays

Adaptability of bacteria and yeasts on flower tissues

Bacteria

- Stigma
- Young flowers

Yeasts

- Hypanthium
- Old flowers

Practical implication

- Bacterial biocontrol agents should be applied beginning in early bloom
- Application of yeasts may be delayed

Proposed future strategies

- I. Bacterial biocontrol
- II. Yeast biocontrol
- III. Integrated management

I. Bacterial biocontrol

Microencapsulation to improve survival and dispersal

Collaborators: K. Kim & H. Choi, Univ. Illinois

Exploit metabolites

Exploit bacteriophages

Collaborator: A. Svircev, AAFC, Ontario

Phage + carrier

Carrier bacterium is Pantoea agglomerans

II. Yeast biocontrol

- Hypanthium screening
- Assess osmotolerance
- pH consideration

III. Integrated management

- Complementary biocontrol
- Agents with antibiotic-like activity (e.g., AMPs)
- Plant resistance inducers

