

World Class. Face to Face.

Optimizing Understory Management in Northwest Orchards

David Granatstein

Washington State University Wenatchee, WA

In collaboration with Kent Mullinix, WSU; Gene Hogue and Tom Forge, AgCanada, Summerland, BC; Lerry Lacey, USDA-ARS, Wapato, WA

PNW Tree Fruit

- National leader in organic apple, pear, cherry
- Orchards reliant on irrigation water from snowpack; global warming influence
- Weed control, tree nutrition are costly in organic systems
- Downward pressure on price, need to cut costs
- Must maintain or improve soil quality NOP
- Goals for understory management control weeds, provide N, conserve water, improve soil, enhance biocontrol, reduce costs, ease of management

Orchard Floor Options

Tillage – costly in young orchards; can degrade soil quality

Flaming – uses fossil fuel; potential tree injury

Inert mulches (e.g. wood chips, fabric) – costly to apply; availability?

Living mulch, cover crops – competition with tree, rodents

Organic herbicides – e.g. acetic acid, clove oil, Brassica meal – marginal effectiveness; costly

How to combine strategies? Change system with the age of the orchard?

Weed control (WW) trial 2004-2005

- 6 treatments, 5 reps: control (mow), wood chip mulch, Weed Badger, Wonder Weeder (2x, 3x, 4x)
- Less tree growth with tillage; more tree leaning?
- No clear soil quality impacts
- Wood chip mulch increased fruit size, increased gross fruit value ~\$600-3000/acre over WW 4x, cost ~\$900/acre to apply
- Wonder Weeder 440'/min vs. Weed Badger 20'/min
- Tillage provides adequate weed control, but stimulates more seed germination

WVC Mulch Trial

Weed control by mulches – June 2000

Orchard Mulching Trials – Summerland, BC

6th Leaf Spartan / M.9

TCSA Roots Yield (mm^2) $(g/0.018m^3)$ (kg/tree)

1. Check	(glyphosate)
----------	--------------

- 2. Biosolids (Vancouver)
- 3. Paper mulch
- 4. 2 + 3
- 5. Composted biosolids + 3
- 6. Alfalfa hay
- 7. Geotextile

World Class. Face to Face.

	1011 b	11.3 c	10.3 c
--	--------	--------	---------------

1052 b 16.9 bc 11.2 b

28.7 abc 1565 a 13.0 ab

1490 a 41.8 a 13.9 a

14.9 a **1406** a **38.7** a

35.2 ab 1203 b **14.0** a

1125 b 19.1 bc 12.7 abc

(Hogue et al., 2000)

Effect of Orchard Mulching on Soil Moisture Depletion

10 cm: WC < Clover = Bare

30 cm: WC = Clover < Bare

Integrated mulch (IMM) trial

New planting: Pinata/M7

Goal: optimize weed control, soil quality,

tree health

Control

WC mulch Living mulch Legume Non-legume

- DISTURBANC

'Sandwich' Legume Non-legume

ww

Integrated mulch (IMM) trial

New planting: Pinata/M7

Goal: optimize weed control, soil quality,

tree health

COVER / RHIZOSPHERE

Control 0
Control 1x
Brassica 1x

WC mulch 1x, 1.5x Living mulch Legume Non-legume 0.5x, 1x 0.5x, 1x, 1.5x

'Sandwich'
Legume Non-legume
1x 1x

WW 0.5x, 1x, 1.5x

Living Mulch (LM) trial

Perennials, biennials, annuals. 3 reps.

Original trial: 26 entries New trial: 32 entries

- Better seed establishment in new planting
- Severe annual grass infestation in both trials
- Definite presence of voles; legumes, grass
- Bentgrass too competitive
- Adequate LM for weed control competes with young trees in Yr 1

Correlation of TCSA growth increment (cm²) and total understory competition (total % cover of weeds and cover crop).

2nd Leaf – TCSA vs. % cover

WASHINGTON STATE UNIVERSITY EXTENSION

World Class. Face to Face.

Living Mulch and Weed Dry Matter

Grow Your Own N

Nitrogen release over 2 weeks from ambient soil with and without clover, root exclusion tubes, and tube covers.

46% of clover N mineralized

- A control plot; tube + cover; no clover
- B control plot; tube + cover; clover clippings added. E control plot; no tube
- C clover plot; tube + cover, clover clippings added F clover plot, no tube

D – clover plot; tube – cover, clover clippings added

Soil Nitrate

(Courtesy L. Hoagland)

Wenatchee Valley College: Alfalfa mulch and clover cover crop increased indicators of enhanced nutrient turnover

Soil Quality

CTL = control

LML = living mulch legume

WC = wood chip mulch WW = Wonder Weeder tillage

(Courtesy: L. Hoagland)

Effect of Mulches on Nematodes in Orchard Soil - Summerland, BC

World Class. Face to Face.

(T. Forge, PARC)

Rodents - the weak link for clover.

Vole Activity IMM Trial, 11/05 & 2/06

Nematode Trial

Hypothesis: wood chip mulch will enhance survival of EPNs and their predation of codling moth larvae (overwintering)

Two species – Steinernema carpocapse, S. feltiae; with and without wood chip mulch; 5 reps

Effect of wood chip mulch and nematode species on codling moth larvae mortality - September 2004

Going Forward

Mulches show real promise – both living and inert can help soil quality

Herbicides an important alternative to tillage

Matching legume N to time of tree need

Will need multiple benefits for economics – e.g. clover for weed control, water conservation, nitrogen

Thanks for technical support: M. Wiman, E. Kirby, K. Lorentz, A. Kukas, R. Fritts, L. Hoagland

http://www.tfrec.wsu.edu/OrganicIFPhttp://organicfarming.wsu.edu

