

Cover Crops for Grape Production

Joan R. Davenport WSU-Prosser jdavenp@wsu.edu

WATER GIS AND MAPPING

NUTRIENTS

TESTING

CHEMISTRY

SOILS

PLANTS

Recent Research

- Olmstead et al., winegrapes (late 1990s)
- Bair et al., juice grapes (early 2000s)

Olmstead Research

- 175 different plants evaluated for two years
- Emergence and stand density recorded
- Assessed for regeneration in second year

Olmstead et al., year 2

- Seven single species, two mixes
- All commercially available

Table 3 Cover crops selected from large evaluation trial in 1998. Entries commercially available were planted in a commercial vineyard (Alderridge Vineyard, Corus Brands, Inc.), Alderdale, WA, 1999.

Scientific name	PI number or common name	
Secale cereale	Cereal rye ^a	
Agropyron cristatum	Fairway crested wheatgrass ^a	
Agropyron cristatum Elytrigia intermedia Lolium perenne	Canada mix ^b	
Festuca ovina duriuscula Festuca ovina Festuca arundinacea	Fescue mix ^{a,b}	
Poa ampla	Sherman big bluegrassa,b	
Medicago lupulina	George black medic ^a	
Medicago lupulina	Dr. B black medic	
Medicago polymorpha	Santiago burr medic or burclovera,	
Trifolium subterraneum	Koala sub-clover ^a	
Trifolium hirtum	Monte Frio rose clover ^a	
Medicago truncatula	Parabinga barrel medic	
Medicago rigidula	N/A, PI # W6 8309	
Medicago orbicularis	Button medic, PI # W6 5203	
Medicago scutellata	Snail medic, PI # 487392	
Medicago littoralis	Strand medic, PI # 537180	

^aCommercially available seed.

^bAdded in 1999 to commercial trial; not evaluated in initial 1998 trial. ^cSantiago was substituted for Parabinga in the 1999 commercial trial due to seed unavailability.

Olmstead Results

Table 4 Establishment and growth of nine cover crop candidates and resident vegetation in 1999 commercial vineyard trial at Alderdale, WA.

Species	Seeding rate (kg/ha)	Emergence (%) DOY 72	Plant height (cm) DOY 152	Vegetative cover (%) DOY 197	Phenological stage DOY 166
Cereal rye	14.6	76.3 bf	56.3ª	32.0ab	80-90% bloom, extensive tillering
Fairway crested wheatgrass	22.4	85.6a	26.3 ^{cd}	28.6abc	20% bloom, extensive tillering
Canada mix ^a	22.4	62.5 °	34.9 bc	28.2abc	30-40% bloom
Fescue mix ^b	22.4	40.0 de	34.8 bc	10.2 d	20-30% bloom
Sherman big bluegrass	22.4	62.5 °	24.2 d	16.6 cd	Vegetative
George black medic	11.2	23.8 f	4.8 e	9.3 d	75-85% bloom, seed pods present and maturing
Santiago burr medic	28.0	42.5 d	8.9 e	19.9 bcd	100% bloom, seed maturing, plants entering dormancy
Koala sub-clover	28.0	28.8 f	4.2 e	17.2 ^{cd}	85% bloom, seeds set into ground
Monte Frio rose clover	28.0	31.3 ef	7.8 e	10.8 d	90-95% bloom, seed heads present
Control	N/A	N/A	37.8 b	36.6ª	N/A

[†]Means with the same letter are not significantly different (Fisher's LSD, p < 0.05).

^aCanada mix consists of Fairway crested wheatgrass, pubescent wheatgrass, and perennial ryegrass.

^bFescue mix consists of tall, hard, and sheep fescues.

Olmstead Conclusions

- Viable Cover Crops:
 - Fairway crested wheatgrass
 - Canada mix
 - Cereal rye
 - Santiago burr medic
- Canada mix (drought-tolerant grasses) reduced weed growth without herbicides.
- Summer dormant characteristics reduced mowing requirements throughout the season.

Olmstead Conclusions - Legumes

- Established slowly and sparsely
- May offer an alternative for vineyards using micro- or overhead sprinklers

Photo by Allyson Leonhard

Bair Research

- Concord grape
- Legumes
 - -Vetch
 - -Yellow Sweet Clover
- Blood Meal
- Urea
- Control
- Organic and conventional vineyards

(small grains for last 3)

Materials

Cover Crops for N Supply

- Challenges
 - Crop that will fix needed nitrogen
 - Nitrogen must meet crop timing
 - Biomass produced at appropriate time
 - Mineralization to release organic N to soil
 - Inorganic nitrogen uptake by vines
 - Cover crop must fit into vineyard management

Cover Crops for N Supply

Legume	Lbs N/ac

Alfalfa 158-230

Hairy Vetch 133-211

Red Clover 163-229

Sweet Clover 238

Cover Crops for N Supply

- Research approach
 - Compare sweet clover and hairy vetch
 - Compare fall and spring planting
 - Compare N availability to soluble N
 - Compare N availability to inorganic N

WASHINGTON STATE UNIVERSITY IRRIGATED SOIL MANAGEMENT

Treatment*	Commercial Vineyard	Research Vineyard
Control (0 N fertilizer)		$\sqrt{}$
112 kg N ha ⁻¹ (Blood meal)	$\sqrt{}$	
112 kg N ha ⁻¹ (Conventional)		$\sqrt{}$
Yellow Sweet Clover ¹	$\sqrt{}$	\checkmark
Yellow Sweet Clover ²	$\sqrt{}$	
Hairy Vetch ¹	$\sqrt{}$	\checkmark
Hairy Vetch ²	$\sqrt{}$	
Hairy Vetch ³	$\sqrt{}$	

¹ Fall plant

² Spring plant

³ Half fall plant, half spring plant

^{*} All treatments incorporated at bloom (late spring)

Results - Biomass

WASHINGTON STATE UNIVERSITY IRRIGATED SOIL MANAGEMENT

Total N Contributions

Vineyard	Cover	N Generated
1	Small Grain	27
1	Fall Vetch	130
1	Fall Clover	118
2	Small Grains	60
2	Fall Vetch	118
2	Fall Clover	37
2	Spring Vetch	107
2	Spring Clover	133
2	Vetch Half&Half	117

Summary

- Leguminous cover crops can supply adequate N
- N release coincides with plant demand
- Development of adequate stand is critical
- Larger seed size and fall planting are advantageous

References

- Bair, K. E., J. R. Davenport, and R. G. Stevens. 2008. Release of Available Nitrogen Following Incorporation of a Legume Cover Crop in Concord Grape. HortScience43: 875 – 880.
- Davenport, J. R., K. E. Bair, and R. G. Stevens.
 2011. The Relationship Between Soil Temperature and N Release in Organic and Conventionally Managed Vineyards. Commun. Soil Sci. Plant Anal: In Press
- Olmstead, M.A., R.L. Wample, S.L. Greene, and J.M. Tarara. 2001. Evaluation of Potential Cover Crops for Inland Pacific Northwest Vineyards Am. J. Enol. Vit. 54:292-303.

Tree Fruit or Vines

- Legumes can work in perennial fruit crops
- Choice of material matters
- Establishment
- Competition
- Complete for Concord with annual tillage
- Half for Apple with mow and blow
- OH Sprinkler likely better than drip

WASHINGTON STATE UNIVERSITY IRRIGATED SOIL MANAGEMENT

WASHINGTON STATE UNIVERSITY IRRIGATED SOIL MANAGEMENT

