

Weed and Nutrient Management in Organic Orchards

David Granatstein

WSU CSANR

Wenatchee, WA

UC Organic Tree Fruit Meeting, Feb. 23, 2011

Outline

- Organic tree fruit trends and economics
- Weed control studies
- Growing N
- Discussion

World organic temperate tree fruit area, 2008

http://csanr.wsu.edu/Organic/OrganicStats.html

Economic Estimates

WASHINGTON STATE UNIVERSITY

World Class. Face to Face.

Organic / conventional* apple production

	USA (WA)		Canada (BC)		USA (NY)		Switz.	
	Org. (US\$/ac)	% Diff.	Org (\$/ac)	% Diff.	Org (\$/ac)	% Diff.	Org (\$/ac)	% Diff.
Fertilizer	71	+58	309	+312	199	+198	287	+66
Weed control	493	+43	129	+115	115	+56	245	+12
Pest mat.	644	+17	367	+60	851	+51	1,897	+15
Total direct cost	3,685	(-4)	3,190	+92	2,945 ^b	+21	10,949	+10
Gross return	7,209	+40	6,979	+66	6,078	+40	13,920	+14
Net return	183	а	3,002	+17	3,132 ^c	+63	-2,011	-2
Price (US\$/Ib)	0.14	+58	0.18	+74	0.59	+62	0.95	+110
Yield (ton/ac)	26.0	n.d.	16.0	-5	23.8	-12	9.1	-44

% Diff. is % difference between conventional and organic. n.d. is no difference. * For NY and Switzerland, 'conventional' system was Integrated Fruit Production

WA: 'Golden Delicious'/M26; Yakima Valley; adapted from Glover et al., 2002. ^a Conv. apple lost US\$4587/ha BC: variety not specified, Okanagan Valley, BC; MAFF, 2002.

NY: IFP vs. organic; 'Liberty'/M9; G. Peck, umpublished; b no pruning, training, taxes, interest, etc.; cullage IFP 3-17%, organic 3-75%; c gross margin only

Switzerland: IFP 'Golden Delicious' vs. organic scab resistant variety; E. Bravin, ARBOKOST, ACW. No land charge or establishment cost included.

WA Apple Costs at Full Production

	Org (2010)	Conv (2009)	Difference Org vs Conv
Fruit thinning	630	653	
Chemicals, fertilizer	1,518	900	+68%
Total variable costs	6,558	5,651	+16%
Total fixed costs	4,848	5,105	-5%
Total costs	11,407	10,757	+6%
Production bin/ac	50 x \$300/bin	50 x \$250/bin	
Gross income	15,000	12,500	+20%
Net return	3,593	1,743	+106%

'Gala'/M.9 4'x10' trellised

Price Trends Washington Apples

10 20 00 01 08 0500 01 05 05 05 00 01 08 05 10

\$0

Price Trends Washington Pears

Bartlett

D'Anjou

Cherry Price Trends Washington State

WAGCHA data. Conventional prices are from season FOB histories; may include organic 2008-2010. Organic prices are from season FOB histories or from sales data search. All grades and sizes. Photo: ARS Image Gallery

Was organic fruit production profitable?

	<u>Yes</u>	<u>No</u>	Wash. organic
2008 crop	43%	57%	orchardists
2009 crop	65%	35%	

Compare cost of organic fruit production to similar conventional. (% of responses)

	<u>2008</u>	<u>2009</u>	<u>2010</u>
20% or more lower	4	5	3
10% lower	8	15	1
Similar	13	7	7
10% higher	34	18	28
20% or more higher	41	55	61

How do you see your organic fruit production changing over the next five years?

- Expand acres under organic management
- 2. Decrease acres of organic management
- 3. Stay about the same
- 4. Exit organic production
- 5. Exit all fruit production
- 6. Don't know

Wash. organic orchardists, Jan. 2011

Weed Control

Why control weeds?

- Limit competition with young trees nutrients, water
- Minimize rodent habitat
- Weeds as hosts for pests, disease inoculum
- Maintain good sprinkler pattern

Organic Orchard Weed Control Options

	Pro	Con
Tillage	Effective; rodents; low cost	Reduced tree growth, fruit size; soil quality; damage trees
Flaming	Control weeds around trunk; rodents; low cost	Tree injury, perennial weeds, fossil fuel
Inert mulches	Effective; soil quality; moisture	Costly; N tie up; soil quality
Living mulches	Add biodiversity; soil quality; fix N	Competition; rodents; persistence
Organic herbicides	Control weeds around trunk; rodents; no tree, root damage	Effectiveness; high cost; multiple applications

Alternative Weed Control Costs

Method	Rate	Freq.	Cost/ac/yr (\$)		
	(ac)		Material	Appl.	Total
Glyphos.	0.5 I	4/yr	24	80	104
Weed fabric	5' x 3750'	1/6 yr	286	51	337
Alfalfa hay	8.5 ton	1/2 yr	319	90	409
Wood chip	100 yd ³	1/3 yr	200	150	350
Spray on	3.4 ton	1/1.5 yr	234	211	445
Flaming	48 lb	3/yr	36	90	120

Weed Fabric in Sweet Cherry

OSU, Hood River, OR – 2001-2007

- Fabric groundcover vs. bare ground in tree row
- 2001-2004 fabric \$2125/acre increased costs
- 2004 fabric trt gross returns \$3240/ac more than bare ground (1st yr of production)
- 2005 \$1633/ac more with fabric
- Fabric trees produced more fruit at an earlier age, maintained higher yields

WVC Mulch Trial

Weed Control by Mulches – 6/1/00

8-yr 'Red Delicious'/M.26 Wenatchee, WA

Effect of Orchard Mulching on Soil Moisture Depletion

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Spray-on Paper Mulch

Cost and longevity are key issues.

Tillage Effects

Treatment	Stem Circ. (mm)	Pruning Mass (g/2 trees)
Herb. Strip	100.3 a	604 a
Mech. Cult.	85.2 b	234 b

3-yr old high density apple

Significant growth reduction with tillage (Wooldridge and Harris, 1989)

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Tillage Effects

	Depth (in)	Length (in)	Root Conc. (in/in)	Weight (g)
Tilled	0-3	0	0	0
(3" depth, 4x)	3-7	666	222	19.6
	7-12	240	40	60.9
	12-18	213	36	131.3
Herb. Strip	0-3	838	279	29.9
	3-7	712	237	43.5
	7-12	330	55	57.1
	12-18	234	39	103.2

19-yr old pear

Trees did not compensate deeper in soil for surface roots lost from tillage

(Cockroft & Wallbrink, 1966)

Tillage Comparison Trial, 2004-2006

- Control (mow), wood chip mulch, Weed Badger, Wonder Weeder at tillage frequencies (2x, 3x, 4x)
- Control = mowed weeds
- Wood chip layer 6" thick

Weed Badger 21.2 ft/min

Wonder Weeder 465 ft/min

Wood chip mulch

Tillage Comparison Trial

'Gala'/M.26, E. Wenatchee, WA

Tillage Trial results

TRT		2005				2006		
	Fruit yield	Fruit Size 80-88	Gross Fruit Value*	Fruit Yield	Fruit Size 80-88	Gross Fruit Value*	TCSA increase	Canopy volume
	kg/tree	%	\$/ha	kg/tree	%	\$/ha	cm ²	m ³ /5 trees
Wood chip	22.4	15.5 a	35,454	14.7	39.0	27,249	3.7 a	56.7 a
Control mow	20.4	6.6 b	29,647	14.3	33.5	24,077	3.0 b	47.6 ab
Cultivator Z 3x	17.6	7.0 b	23,603	13.3	22.0	25,100	2.3 c	39.2 b
p=	0.150	0.014		0.805	0.076		0.001	0.008

Total Biomass 3-yr Pinova/EMLA.7

World Class. Face to Face.

WASHINGTON STATE

UNIVERSITY

Yield Efficiency (g fruit/g tree DM)

0.78

0.41

0.50

Rodents - the weak link.

Vole Trail Length IMM Trial, Winter 05/06

(Winter 06/07, too few to analyze)

Wood chip (WC) = bare ground (CTL) = tilled (WW)

Galium in Sandwich system (SWNL) significantly lower voles than other in-row living mulches

Brassica Seed Meal

- BSM to control apple replant disease
- Assess weed suppression, N effect (6% N); 'weed and feed'?

- 85% reduction of weeds with BSM; adequate for first season
- Results varied with soil type

FLF Co. Trials

3 sites

'Gala'/M.26 – 8 yr old, sandy soil, quackgrass

'Honeycrisp'/M.26 – 4 yr old, loam soil, quackgrass

'Anjou' pear – 15 yr old, loam soil, quackgrass

Comparing mulch, tillage, herbicide/burn

Shade in pears reduced weed pressure

Herbicide not effective for long, mulch helped

\$230/ac for dedicated tractor and driver for cult., burn, or herb – 3-4 trips per month

'Gala' fruit yield: Mulch>Till>Herb, fruit size same

WASHINGTON STATE UNIVERSITY

World Class. Face to Face.

Effect of Weed Management on In-row Vegetation

\$230/ac for dedicated tractor and driver for cult., burn, or herb – 3-4 trips per month

Tree leaf total N, 2010

		Pine Creek	Sundown	Sunrise
	Vantage			
<u>Treatment</u>		Total N	l (%)	
Herbicide	2.32 b	1.99	2.66	2.40 a
Tillage	2.34 b	2.08	2.71	2.43 a
Wood chip	2.39 a	2.00	2.51	2.27 b
Weed fabric				2.37 a
p	0.012	0.281	0.562	0.017

Foreman Land and Fruit Co.

Tree and Soil Water

Soil temperature (5 cm) Aug. 3

Till 31.3° C Mulch 19.7° C

Optimum for dwarfing rootstock 14° C (Skroch and Schribbs, 1986)

Going Forward
New Equipment

Nutrient Management

- Nitrogen always needed
- Organic sources nutrient release rate (manure vs compost), nutrient composition, origin (e.g. chicken and arsenic)
- Organic sources higher transport cost, application cost; pre-harvest interval
- Need good water management
- Need weed control to minimize competition with trees

Peshastin Creek Growers Association D'Anjou Pear Leaf Nitrogen, 2004

Organic Nutrient Content, Release and Cost

Extensive lab and field research done on many amendments

Release rate correlated to total N

Organic fertilizer calculator developed based on this research

http://smallfarms.oregonstate.edu/calculator

- In-row
- Recycles P, K
- Root N contributions, but N fix suppressed
- Suppresses weeds
- Rodent risk

- 46% of clover N mineralized over 3 weeks
 - Tree growth, fruit yield enhanced

Grow Your Own N

Nitrogen release over 3 weeks from ambient soil with and without clover, root exclusion tubes, and tube covers.

46% of clover N mineralized

Tree growth, fruit yield enhanced

- A control plot; tube + cover; no clover
- B control plot; tube + cover; clover clippings added. E control plot; no tube
- C clover plot; tube + cover, clover clippings added
- D clover plot; tube cover, clover clippings added
- F clover plot, no tube

Grow N Trial

- Legumes direct seeded in drive alley (4' swath) – May 19, 2008
 - Alfalfa cv. Radiant
 - Jumbo Ladino white clover
 - Kura clover
 - Birdsfoot trefoil cv. Norcen
- SPRAY or NO SPRAY prior to seeding
- Mow and blow on to tree row

No-till drill

Alfalfa after seeding

Office DEPOT

41 = 11 =

Year 1

Ladino clover

Spray

Effect of Pre-seeding Treatment on Biomass

	Sum of 8/08, 7/09, 8/09 cuttings		Legume only, 7/09		
	Sprayed	Unsprayed	Sprayed	Unsprayed	
	Dry matter (kg/ha)				
Alfalfa	759 a	685 a	157 a	105 b	
Ladino	701 a	719 a	191 a	131 b	
Trefoil	783 a	716 a	141 a	74 b	
Kura	476 a	486 a	56 a	18 a	

Ladino Clover – May, Yr 2

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Alfalfa – May, Yr 2

Mow and Blow

Legume residue in tree row after mow and blow

Year 3, 2010

39 days after mowing

Morgan Orchard

Cumulative Cover Crop Biomass

% Cover of Legumes in Drive Alley

April - Aug

2010

2009

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Grower Application

- Grafted 'Fuji' Young apple block
- Seeded mid May of 2010
- Direct seed drill directly into existing vegetation of grasses and weeds (flailed before seeding)
 - -- double pass, high seeding rate
- Excellent establishment; ~7' swath

Photos June 16, 2010

Direct-seeded Alfalfa

Red Clover

N Contribution

	Biomass N 2009	Soil PRS 2009	Ave. Dry Matter*	2009 Tissue N	Ave. N Added
	(lb N/ac)	(ppm NO ₃ -N)	(ton/ac)	(%)	(lb N/ac)
Alfalfa	38	251	3.56	4.11	46.9
Trefoil	26	179	3.60	3.40	39.2
Ladino	25	173	2.62	3.92	32.8
Kura	14	132	2.72	3.07	26.7
Grass	15	103	3.28	2.30	24.2

^{*}Ave. 2009 and 2010. Yield on a full acre basis; actual strips are 0.16 of area (2.2' strip)

Economics

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Costs per acre of orchard, 4' swath

Herbicide 7.15
Tractor/sprayer14.85
Tractor/seeder 29.70
Seed 32.00
Total 83.90

Planting good for at least 5 yr - \$21/yr cost

Alfalfa – 3.5 ton/ac/yr @ 4% N = 280 lb N

Width	N content	Fert. Value ^a
5 '	101	\$71
4'	81	\$57
3'	59	\$41

 $$84 \cos t / 130 \text{ lb N}^{b} (4 \text{ yr}) = $0.65/\text{lb}$

^aEstimate N fertilizer at \$0.70/lb

b40% avail., accounting for Nmin (50-70%), losses

What we learned so far ...

- Need multiple years to assess species
- Shade, traffic affecting growth
- Spraying out grass helped, but all legumes had reasonable stands; compensate with double pass, higher seed rate
- Need greater growing surface to boost
 N contribution; net ~3' with tires
- Combinations ? Alfalfa + ladino + kura?
- Effects on soil P, K levels over time?

Thanks to USDA Organic Research Special Grant for funding.

