

Orchard Floor Management

David Granatstein

WSU-Center for Sustaining Agriculture and Natural Resources Wenatchee, WA

Organic Orchard Floor Management Workshop -- October 11, 2016

Orchard Floor Management

Functions

Microclimate
Physical support
Gas exchange for roots
Nutrient cycling/storage
Habitat (micro, macro)
Water intake/storage

Impacted by:

Understory species
Understory canopy
Irrigation system
Nutrient inputs
Spray drip
Organic inputs

Microclimate

- soil temperature inverse to the amount of herbage or mulch
- plant mulch dampens extremes of daily soil temperature
- plant cover reduces minimum air temperature by 1-2°F
- bare, compacted wet soil raised minimum air temperature by as much as 4°F

(Skroch & Shribbs, 1986)

Microclimate

Soil Temperature:

- Proposed optimal temperatures for apple roots of 64-77°F. Above 86°F seemed to be deleterious. (Gur et al. 1974)
- Is a significant genetic component. M.9 died at 66, 77°F; Roots matured fast, browned, sloughed, and were infected by pathogen.

(Nelson and Tukey, 1956)

 Soil temperature <59°F delayed bud break, fewer flower clusters on 'Braeburn'/M.9. (Greer et al., 2006) Root temperature study with Malling clones using water bath (°F)

(Nelson and Tukey, 1956)

Microclimate

Soil Temperature:

- Proposed optimal temperatures for apple roots of 64-77°F (18-25C). Above 86°F (30C) seemed to be deleterious. (Gur et al. 1974)
- Soil temperature <59F (15C) delayed bud break, less flower clusters on 'Braeburn'/M.9 (Greer et al., 2006)
- Is a significant genetic component. M9 died at 66, 77F;
 Roots matured fast, browned, sloughed, and were infected by pathogen (Nelson and Tukey, 1956)
- Black fabric in tree row of apple. Elevated soil temps, often daily maximum was >82°F at 8" depth. Negative effect on leaf Zn. Yield and tree growth same as herbicide strip. (Neilsen et al., 1986)

Neilsen et al., 1986. Accumulated degree days >10C at 8" (20 cm) depth, Red Delicious/M.26, Summerland, BC

Black plastic had similar effect at 38" (1 m) depth

WSU Sunrise Orchard, August 2010

Mid-day Soil Temperature

WSU Sunrise Orchard, June 6, 2011

Air temperature 80F (26.7 C), 11am

Water Relations

- soil moisture availability: mulch > bare soil > minimal cultivation > grass > legumes > continuous cultivation
- mowing decreases water use
- tillage dries soil
- 'Golden Delicious' midday stem water potential range -10 to -28 KPa; yield loss started around -15 KPa; Israel (Gur)
- 'Gala' in Geneva, NY; SWP -7 to -11 Kpa
- Evaporative effect lessens with increasing tree size, canopy

Mid-day Stem Water Potential

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Water Relations

 Did not induce water stress by tilling trees for first time in August

1		1		J	
	7/11	7/12	7/13	7/16	7/24
	Stem Water Potential (-Kpa)				
Untilled	16.4	16.7	11.4	11.8	10.5
Till 1 side (3")	16.0	16.3	11.2	10.8	10.5
Till both sides (3")	15.7	16.1	10.8	11.5	10.6
Till both sides (1.5")	16.0	16.5	11.1	11.7	10.9
p =	0.87	0.85	0.84	7/11	0.86

Irrigation 7/5, 7/12, 7/17; afternoon temps 85-95F

Mulch consistently moister than bare ground;
 20-25% water savings over season

WVC - Enviroscan Results

Wood chip mulch led to 20-25% less moisture depletion between irrigations.

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Rodents

- Limiting factor for many orchard floor practices
- Voles need both habitat (cover) and food; food shifts to woodier material in winter
- Organic control options minimize habitat;
 Vit D3; bait stations (e.g. oats + plaster of paris); mousetraps; raptor perches; cats; other??
- Risk management for 4-5 year population cycle, heavy snow winter
- Increased risk mulches (straw, fabric); tall vegetation; legumes near tree trunks (e.g. white clover)

Vole Presence

IMM Trial, Winter 05/06

(Winter 06/07, too few to analyze)

- Wood chip (WC) = bare ground (CTL) = tilled (WW)
- Galium in Sandwich system (SWNL) significantly fewer voles than other in-row living mulches

Weed Control

Why control weeds?

- Limit competition with young trees nutrients, water
- Minimize rodent habitat
- Weeds as hosts for pests, disease inoculum
- Avoid blocked sprinklers

Orchard Weed Control Options

	Pro	Con	
Herbicides	Control weeds around trunk; rodents; no tree, root damage; low cost	Resistance, leaching, soil quality loss; effectiveness, cost (org herbicides)	
Mowing	Fast, inexpensive	Short-term suppression; still have competition, habitat	
Tillage	Effective; rodents; low cost	↓ tree growth, fruit size, soil quality; damage trees	
Flaming	Control weeds around trunk; rodents; low cost	Tree injury, perennial weeds, fossil fuel	
Inert mulches	Effective; soil quality; moisture	Costly; N tie up; soil quality	
Living mulches	Add biodiversity; soil quality; fix N	Competition; rodents; persistence	

(Granatstein & Mullinix, 2008)

How to combine strategies? Change system with age of orchard?

Weed Control Costs in Organic Orchards

	\$/acre/yr	<u>Year</u>
Flame weed + hand hoe	208	2014
Weed fabric (10 yr, open/close)	420	2014
Flaming (5x)	113	2012
Tillage (5x, Wonder Weeder)	115	2012
Wood chip mulch (3 yr life)	400	2012
Org. herbicide (4x)	508	2012
Mowing	210	2010

For more details, see the on line presentation http://treefruit.wsu.edu/videos/weed-control-in-orchards/

Mulches

- Can impact soil (water, temperature, biology, nutrients), weeds, fauna (nematodes)
- Effects on trees:
 † tree growth,
 † fruit yield,
 † fruit size, lower leaf N
- Generally more than pay for themselves
- Wood chips have had fewest problems
- Weed control variable, <1 to 3 yr; not effective for perennial weeds
- Challenges: finding the material, hauling, spreading
 - Solution? Mow and blow, utilize prunings; add flaming, "tillage" to extend weed control life

Weed Biomass

Weed biomass (dry matter) in the tree row. Columns with the same letter are not significantly different (p<0.05) for that orchard.

Yield Effects - WA

Commercial organic orchards, large-scale field plots

Grower Returns

8+ yr 'Gala'/M.26, sandy soil

	2009	2010	2011	3-Yr Rel to Till
	Apple Returns* (\$/ac)			
Mulch	2,320	8,440	12,764	+4,777
Herb/flame	1,971	6,193	9,638	-946
Tillage	2,942	6,843	8,963	0

Mature 'd'Anjou' pears, good soil

	2009	2010	2011	3-Yr Rel to Till
		Pear R	eturns* (\$/a	c)
Mulch	9,580	12,636	9,377	+1,432
Herb/flame	10,274	10,621	8,141	-1,125
Tillage	10,676	11,182	8,302	0

²³

Mulching Sweet Cherry

- The Dalles, OR; 'Bing'/Mazzard block (32 yr old)
- Wood chip mulch with compost blend applied
 October 2014 every other row; total cost
 ~\$1,600/acre (70 yd/acre = 1" depth in tree row)
- Increased cherry size next July 2015; added revenue \$2,600/acre; net gain \$1,000/ac
- Internal mulch; bought large flail mower to recycle larger pruning wood that
 - being hauled out and burned; reduced costs of hauling prunings paid for flail in one season

'Mow & Blow' Mulch Trial Quincy, WA

- 'Fuji/M.9' 2nd and 3rd leaf
- Tall fescue forage grass mix, mowed weekly
- 1x rate = 0.5-1.0 lb/ft² DM
- About 10% of clippings retained after 2 yr
- 2x rate led to 20% increase in tree growth
- Clippings add 25-50 lb
 K/ac; 50 bin/ac apple crop removes 56 lb

Nobili side delivery flail mower (Italy) and planted cover crop

Tillage

- Broad spectrum weed control
- Relatively low cost
- Incorporates organic amendments, speeds nutrient mineralization
- Helps disrupt rodent habitat
- Challenges: root pruning, trunk damage, soil
 OM oxidation, soil structure breakdown
 - Solutions? Lower disturbance machines (weed brush); organic amendments can compensate for OM loss; add "tillage" to mulching (hi-residue cultivators)

IMM clean cultivation: root pruning?

2006 tree leaning count

Tillage Effects

Treatment	Stem Circ. (mm)	Pruning Mass (g/2 trees)
Herb. Strip	100.3 a	604 a
Mech. Cult.	85.2 b	234 b

3-yr old high density apple, South Africa

(Wooldridge and Harris, 1989)

Total Biomass 3-yr Pinova/EMLA.7

E. Wenatchee, WA

Soil Organic Matter

CA strawberries – paired fields		
Biological property	Con	Org
Total C (g C/kg soil)	8.25	10.04 *
Total N (g N/kg soil)	0.666	0.867 **
Organic matter (mg/kg soil)	1.46	1.84 *
Microbial biomass (μg CO ₂ -C/g soil)	96	249 ***

8-10 t/ac compost

Courtesy: P. Andrews

WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Weed Fabric

- Excellent weed control without soil disturbance
- Excellent habitat for voles
- Expensive to establish, but can increase early yields
- Mutually exclusive to other practices
- Challenges: excessive soil temperatures; no OM input unless opened; loss of soil quality; waste product at end of life
 - Solutions? Open fabric in winter; use whiteon-black fabric to reduce heat, stimulate trees; biodegradable mulches; snakes!

Weed Fabric in Sweet Cherry

OSU, Hood River, OR – 2001-2007

- Fabric groundcover vs. bare ground in tree row (herb.)
- 2001-2004 fabric \$2125/acre increased costs
- 2004 fabric trt. gross returns \$3240/ac more than bare ground (1st yr of production)
- 2005 \$1633/ac more with fabric
- Fabric trees produced more fruit at an earlier age, maintained higher yields

Sunrise Fabric Trial

- 2010-2012
- 6 yr old 'Gala'/M9

	3 Yr Increase TCSA	3 Yr Fruit Yield	Fruit size 2011*	Yield Eff.
	(%)	(kg/tree)	(g)	(kg/cm ²)
Black	113	39.6	211	1.79
White- on-black	129	47.1	219	2.16
<i>p</i> =	0.13	0.08	0.05	0.005

Makus 2007. White-on-black provided excellent weed control and raised anti-oxidant levels in blackberry.

^{*}no fruit size difference in 2010, 2012

Alley Vegetation

Legumes for N Fixation

39 days after mowing; initially direct seeded

Add 30- 80 lb avail. N/ac/yr; US\$0.70/lb N

What Might an Ideal OFM System Look Like?

Narrow band cover crop
- low competition, rodent
repellent, beneficial
insect habitat,
bioremediation

Mulch on row edges

+

Legume in alley for N - mow and blow

+

Recycle prunings back to tree row

What Might an Ideal OFM System Look Like?

- Thin mulch mow and blow + flailed prunings
- Supplemental weed control organic herbicide, hiresidue cultivator, thermal, microwave, or other non soil disruptive
- Limited other vegetation in tree row for specific period

 ↑ C input, soil biota; flowers for beneficials; N capture
- Legume as part of alley mix to fix some N.

OR

Cover crop mix in tree in row

- Repel rodents, exclude weeds, fix N, support natural enemies, provide active carbon to soil biota, provide bioremediation of replant
- Need growth suppression mechanism herbicide, mowing, growth regulator, growth habit

Summary

- No perfect organic orchard floor management system
- All choices have trade-offs
- Need more clarity on effects of tillage on roots; new equipment options?
- Organic herbicide would be a game changer
- Can grow a portion of N need internally with legumes
- Need more work on novel plant-based solutions

Visit

http://www.tfrec.wsu.edu/pages/
organic/ for more details

