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Meta-analysis and review of pesticide
non-target effects on phytoseiids, key
biological control agents
Rebecca A Schmidt-Jeffris,a* Elizabeth H Beersb and Chris Saterb

Abstract

Understanding pesticide non-target effects on natural enemies is a key element of successful conservation biological control.
Due to their importance in agroecosystems worldwide, the phytoseiid mites are the most well-studied natural enemies in pes-
ticide selectivity research. The wealth of literature associated with this topic allows for a thorough meta-analysis of pesticide
non-target effects and may also indicate general trends relevant to many cropping systems. We conducted a meta-analysis
using 2386 observations from 154 published papers examining the impact of pesticides on lethal (adult and juvenile mortality)
and sublethal (fecundity, egg hatch) effects. Insecticides and herbicides did not statistically differ in toxicity to phytoseiids, but
research on herbicide non-target effects is scarce. Specific insecticides, fungicides, and miticides were sorted into least and
most harmful categories. Phytoseiid species also differed in sensitivity, with Galendromus occidentalis (Nesbitt), Neoseiulus cali-
fornicus (McGregor), and Typhlodromus pyri Scheuten among the least sensitive species. Sensitivity variation may be partly due
to pesticide resistance; the greatest differences between species were within older mode of action (MOA) groups, where resis-
tance development has been documented. It has been speculated that specialist phytoseiids, which closely associate with
Tetranychus spp. spider mites, have more opportunities for resistance development due to their necessary proximity to a pest
that rapidly develops resistance. Effect sizes were higher for generalist phytoseiid species, supporting this hypothesis. This
meta-analysis highlights pesticide types (herbicides) andMOA groups where more research is clearly needed. Our analysis also
allows for more robust generalizations regarding which pesticides are harmful or selective to phytoseiids.
© 2021 Society of Chemical Industry. This article has been contributed to by US Government employees and their work is in the
public domain in the USA.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Selecting pesticides with minimal non-target effects on pest natural
enemies is a critical component of conservation biological con-
trol.1–4 Non-target effects vary between active ingredients (AIs) and
species,1,5 making studies of pesticide effects an essential compo-
nent of building integrated pest management (IPM) programs. Since
the 1950s, pesticide non-target effects research has increased expo-
nentially.6–8 However, much remains unknown in this field. New pes-
ticides are continually developed, creating a need to examine their
effects on key natural enemies to maintain existing IPM programs.
Newer materials are often more selective in terms of acute
mortality,1 but this may require examination of their sublethal
effects.9 Natural enemies that have been understudied may be dis-
covered to be important in well-established IPM programs,10,11

adopted as newly popular augmentation agents,12 or become key
to invasive species control efforts.13 These developments require
continuously expanding research on pesticide non-target effects.
Predatory mites in the family Phytoseiidae are the most impor-

tant biological control agents of pest mites14 and more than half
of all mite biological control papers include phytoseiids.15 Addi-
tionally, > 60% of the current augmentative biocontrol market is
predatory mites.16 Phytoseiids are predators of tetranychids,

eriophyids, tarsonemids, tenuipalpids, thrips, scales, and white-
flies, and also feed on honeydew, pollen, nectar, fungi, and leaf
fluids.14,17,18 Conserving key phytoseiid species through selective
use of pesticides is a critical component of many integrated mite
management programs.19–22

Phytoseiids are the most studied natural enemies in the field of
pesticide non-target effects. In the last quantitative review of the
pesticide non-target effects literature, they were the most repre-
sented group, making up 19% of the records from the 20 most
tested families.23 Of the 22 most tested species, five were phyto-
seiids. These five species made up 32% of the records for the
top 20 species and the phytoseiid with the most records [Neoseiu-
lus fallacis (Garman)] was the second most studied natural
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enemy.23 Phytoseiids also play a large role in studying pesticide
resistance development in natural enemies. They comprise the
majority of documented resistant natural enemies and they tend
to develop higher levels of resistance than other groups.8,23

Because of this large body of literature, phytoseiids are an excellent
system for examining patterns in pesticide non-target effects. They
have a near-worldwide distribution and are found in a wide range
of climates,14 making these predators relevant in many crops. They
are key components of conservation,24,25 augmentation,16 and classi-
cal26 biological control programs. Phytoseiid diets are highly diverse,
making it possible to study both specialists and generalists.27,28 There
are conflicting hypotheses regarding how predator diet specializa-
tion influences pesticide resistance development,8,29 but this has
not been formally investigated.
The last quantitative review of the pesticide non-target effects

literature (the SELCTV database5) primarily contained studies from
1985 and earlier.30 Since then, many new pesticides have been
developed. Of particular significance to phytoseiids, several new
miticides with selective modes of action (MOAs) have entered
the market19 and there has been a shift away from broad-
spectrum insecticides. Methods for analyzing data from previous
studies have also been refined to allow for statistical comparisons
between groups (i.e. meta-analysis). There is a clear need to sum-
marize the literature on pesticide non-target effects on phyto-
seiids to identify existing patterns and determine research
priorities.
The purpose of this meta-analysis was to summarize the litera-

ture on pesticide non-target effects on phytoseiids to compare
effects between pesticide types and phytoseiid species and to
identify research needs. Specifically, we examined differences in
effect sizes between (i) different life stages/tested parameters
(e.g. mortality, fecundity); (ii) pesticide type, MOA, and AI;
(iii) phytoseiid species; and (iv) lifestyle type. Our analysis can be
used to identify trends in pesticide non-target effects, aiding
IPM practitioners in optimizing pesticide selection for conserving
phytoseiids within their cropping system. This is especially critical
given the prominent role of phytoseiids in augmentative and con-
servation biological control programs worldwide.

2 MATERIALS AND METHODS
2.1 Study selection
We examined the existing literature for studies by using combina-
tions of the keywords ‘Phytoseiidae’, ‘non-target’, ‘pesticide’, ‘side
effect’, and ‘sublethal’ as search terms in Google Scholar. Addi-
tional papers were included by reviewing studies referenced in
the International Organization for Biocontrol-West Palearctic
Regional Section (IOBC-WPRS) Pest Select Database.31 We also
examined the reference lists of papers retrieved in our initial
search. Articles in languages other than English were included if
some of the content (i.e. abstract, captions) was in English and
allowed us to determine relevance prior to requesting translation
assistance.
Studies were excluded when measures of variation or sample

sizes were not reported. Studies that only reported the IOBC rat-
ing31 instead of the associated data were also excluded. Data
were only included for pesticides tested at field rates. We also
excluded studies where only median lethal concentration (LC50)
values were reported, because effect sizes cannot be calculated
from these values. When mortality data frommultiple time points
were collected in one study, we only used data from the time
point closest to 48 h after exposure, as this appeared to be the

most common time frame evaluated. If both 24 and 72 h data
were provided, 72 h data were used. Entries were excluded if
the AI could not be determined or if unformulated pesticides were
used. Only studies examining direct contact or fresh residues
(as opposed to aged residues) were included. Studies examining
other exposure routes, such as ingestion, were very rare; this is
an area of research that requires further investigation. Only labo-
ratory trials were included, as wewere unable to find enough field
studies that included a control, reported variance, and identified
phytoseiids to species.

2.2 Data extraction
We extracted data for the four most common response variables:
adult mortality, juvenile mortality (larvae or nymphs), egg hatch
(treated eggs or eggs laid on treated surfaces), and fecundity.
Data from graphics were extracted using WebPlotDigitizer.32 In
many cases, only corrected mortality33 was reported; for these
studies, we entered control mortality as 0%. Data regarding mor-
tality and egg hatch was converted to binomial data whenever
possible, as weighted effects sizes based on means cannot be cal-
culated when variance is zero, which frequently occurs in mortal-
ity data (0% control mortality, 100% mortality for highly toxic
pesticides). Pesticides were classified as insecticides, insecti-
cides/miticides, miticides, fungicides, herbicides, or plant growth
regulators (e.g. fruit thinners) based on pesticide labels and fur-
ther categorized by MOA as determined by the Insecticide Resis-
tance Action Committee (irac-online.org/modes-of-action/),
Fungicide Resistance Action Committee (frac.info/fungicide-
resistance-management), and Weed Science Society of America
(wssa.net/wssa/weed/herbicides), respectively. The species of
each phytoseiid tested was updated according to current nomen-
clature standards by checking the Phytoseiidae Database.34,35

Phytoseiid diet specialization was classified by lifestyle type
(I–IV).27,34

2.3 Data analysis
Data were analyzed using Open MEE.36 For means data, the effect
size calculated was Hedge's d and for binomial data, the log odds
ratio was calculated. Effect sizes quantify the difference between
groups, which allows for analyses to incorporate data
between multiple studies.37 Log odds ratios were converted to
Hedge's d to allow for comparison between all data types.37 Pos-
itive values indicated a harmful effect (increase in mortality,
decrease in egg hatch or fecundity). The ‘Subgroup Meta-analysis’
function was used to compare effect sizes of various categorical
variables. For each group analyzed, its effect size and 95% confi-
dence interval (CI) were calculated. Effect sizes were considered
significantly different from zero or each other when 95% CIs did
not overlap37; this corresponds to ⊍ (P < 0.05). We compared
effect sizes for: (i) the type of non-target effect examined (adult
mortality, fecundity, etc.), (ii) the type of pesticide (insecticide,
fungicide, etc.), (iii) fungicide AI, (iv) insecticide MOA group,
(v) miticide AI, (vi) phytoseiid species × MOA group, and
(vii) phytoseiid lifestyle type.
For most analyses, the effect sizes for adult mortality, juvenile

mortality, fecundity, and egg hatch were examined separately.
For comparing fungicide AI, the effect size calculated combined
the effects of adult and juvenile mortality. For comparing AIs
within miticides, we calculated effect sizes for adult mortality,
fecundity, and egg hatch, but not juvenile mortality, as relatively
few AIs had sufficient observations for analysis. When comparing
phytoseiid species, we conducted separate analyses for each of
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themost commonly tested MOAs and only examined the effect of
adult mortality; this prevented certain species from seemingmore
or less sensitive if only harmful or harmless pesticides had been
tested against them. To compare lifestyle types, we calculated
the effect size for adult mortality across all pesticides for each type
(I–IV). Only effect sizes based on n > 2 observations were used.

3 RESULTS AND DISCUSSION
The literature review yielded 2386 observations/records from
154 papers, which were published from 1956 to 2020. The meta-
analysis database can be found in Supporting Information Appen-
dix S1.

3.1 Non-target effect type
In our meta-analysis, adult and juvenile mortality did not differ in
effect size and were significantly higher than the effects on fecun-
dity and egg hatch (Fig. 1). Previous reviews of pesticide non-
target effects indicate that juveniles are more sensitive than
adults due to their lower weight, which increases dose per
amount body mass, and larger surface to volume ratio, which
increases relative surface exposure.38 Based on this logic, IOBC
testing protocols recommend first testing newly hatched phyto-
seiid larvae, assuming that these are the most susceptible
stage.36,37

However, if this assumption is incorrect, opportunities to test
impacts on reproduction could be missed in assays when only
juveniles are tested. In the SELCTV database, phytoseiid adults
were themost sensitive group, followed by juveniles, then eggs.39

Surprisingly little research has been done to directly compare
juvenile and adult phytoseiid susceptibility within the same study.
One study on Galendromus occidentalis (Nesbitt) found that adults
were more susceptible to thiacloprid, spinetoram, novaluron, flu-
bendiamide, and mancozeb + copper, whereas larvae were more
susceptible to carbaryl, azinphosmethyl, spinosad, and sulfur.40

The results of the meta-analysis support prior assumptions that
eggs are the least sensitive stage, but also indicate that juveniles

and adults do not differ in sensitivity. This indicates that in gen-
eral, assays could use either life stage. Where resources are limited
and only one life stage can be tested, it would be more beneficial
to test the adult life stage, as this allows for examination of
impacts on fecundity, egg hatch, and reduction of second gener-
ation offspring.37,39 However, for pesticides that specifically target
certain life stages (e.g. growth regulators), it is obviously more
appropriate to test the stage impacted.

3.2 Pesticide type
Insecticides and insecticide/miticides were the most common
types of pesticides tested, making up 61% of records in our
meta-analysis (Fig. 2). There were few studies examining plant
growth regulators, with only the effect of juvenile mortality con-
taining enough records for analysis. Herbicides were the next
least common type, with only 38 records total and an insufficient
number to examine effects on fecundity or egg hatch (Fig. 2). In
the last review of the literature of non-target effects on all natural
enemies, herbicides, fungicides, and miticides made up 1.4%, 9%,
and 7% of records, respectively.23 While research onmiticide non-
target effects has increased, our meta-analysis and previous
work41,42 highlight that herbicide effects remain poorly described.
In the meta-analysis, insecticides and insecticide/miticides

caused higher phytoseiid adult mortality than miticides or fungi-
cides (Fig. 2). The effect of herbicides was intermediate and dif-
fered from none of the other groups. Juvenile mortality was
highest for insecticides, insecticide/miticides, and herbicides and
lowest for miticides, fungicides, and plant growth regulators
(Fig. 2). Insecticides and insecticide/miticides also caused the
greatest reduction in fecundity. All groups caused a reduction in
egg hatch and did not differ from each other (Fig. 2). While plant
growth regulators had no effect on juvenile mortality, all other
pesticide types were harmful to phytoseiids (effect size > 0).
In the SELCTV summary of non-target effects on all natural ene-

mies herbicides were the secondmost toxic group, after the insec-
ticides.23 SELCTV indicated that herbicide toxicity varied widely,
with herbicides being among both the most and least toxic
AIs.23 In work focusing on Typhlodromus pyri Scheuten, 58% of
fungicides, 53% of herbicides, and 90% of insecticides reviewed
had lethal effects.43 A review of the literature on pesticide non-
target effects on N. fallacis found that herbicides were intermedi-
ate to insecticides and fungicides in toxicity.30 Another review
indicated that herbicides are generally harmful to phytoseiids
and tend to be more harmful to phytoseiids than to beneficial
insects.38 Because herbicide non-target effects studies were
scarce, we were unable to quantitatively compare toxicity
between AIs or MOAs. A qualitative review of the herbicide non-
target effects on phytoseiids found that bromofenoxim, bromox-
ynil, ioxynil, methabenzthiazuron, glufosinate, and paraquat were
the most toxic herbicides.41

The current meta-analysis and previous work indicate that herbi-
cides can be moderately to highly toxic to phytoseiids. Given the
potential of these pesticides to disrupt biological control, the lack
of research is striking. This disparity may be due to the large focus
on commercially available phytoseiids used for augmentation in
glasshouses (see Section 3.6 Species identity), where herbicide use
is rare. Because phytoseiids useweeds for shelter and food resources,
this gap in the literature should be addressed.41,42

3.3 Fungicides
Unlike the herbicides, several fungicide AIs were sufficiently
represented to allow for quantitative comparison between

Figure 1. Effect sizes (d) of all pesticides combined on four types of phy-
toseiid non-target effects. Error bars indicate 95% bootstrapped confi-
dence interval (CI). Where these intervals do not overlap with d = 0 or
each other the effect or difference is significant. Treatments marked with
the same letter were not statistically different (P > 0.05). Sample size
(n records) is indicated underneath each CI.
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groups. The fungicideMOAswithAIs representedby enough records
for analysis were: cytoskeleton and motor protein (group B), respira-
tion (group C), signal transduction (group E), sterol biosynthesis in
membranes (group G), and multi-site activity (group M).
Within fungicide AIs, boscalid, pyrocymidone, fenarimol, myclo-

butanil, propiconazole, triadimenol, captan, dithianon, metiram,
and dodine did not increase phytoseiid mortality (Fig. 3). Group
C contained both the most and least harmful AIs, binapacryl and
boscalid. Binapacryl is a combination miticide/fungicide, whereas
boscalid is a fungicide only. These fungicides are in separate
chemical classes; chemical properties of the AI may bemore infor-
mative as to why some products are more toxic than others, espe-
cially in the case of pesticides not intended to target arthropods.
For instance, it was speculated that herbicide lipophilicity or vola-
tility may impact phytoseiid toxicity.41 However, generalizations
about MOAs may be useful in making management recommen-
dations. Of the MOA groups represented by more than two AIs,
group G had the lowest proportion with > 0 effect size and
groups B and C had the highest.
Previous research on natural enemies highlights the role of

chemical class, rather than MOA, in fungicide toxicity. For all nat-
ural enemies in SELCTV, fungicides that were more toxic were
those in chemical classes that also contain insecticides and miti-
cides, such as nitrophenols and carbamates.23 A literature review

on phytoseiids associated with soft fruit production found that
most fungicides were fairly harmless.42 The effects of mancozeb
were highly variable, which the authors noted was likely due
to variations in species and life stage tested.42 Like the pre-
sent meta-analysis, the review listed boscalid, iprodione,
myclobutanil, propiconazole, copper salts, and diodine as
fairly harmless fungicides. However, although pyraclostrobin
and azoxystrobin were designated as harmless in the
review,42 these fungicides were grouped with the more harm-
ful AIs in our meta-analysis, potentially due to their large var-
iance (Fig. 3). A review of pesticide effects on N. fallacis, which
is considered a pesticide-sensitive species,44 found benomyl
and captan to be the most toxic fungicides and propicona-
zole, dithianon, and metiram to be the least toxic.30 These
results correspond well to those in the meta-analysis, with
the exception of captan, which was found to have no effect
in our study, but was rated intermediate in the review.30

Given the higher susceptibility of N. fallacis, this result is not
surprising and underscores the variability in responses to
some AIs between phytoseiid species. While fungicide non-
target effects are better understood than those of herbicides,
they are still understudied relative to the insecticides and
more work is needed to better understand how fungicides
impact predatory mites.

Figure 2. Effect sizes (d) of various pesticide types on phytoseiid adult mortality, juvenile mortality, fecundity, and egg hatch. Error bars indicate 95%
bootstrapped confidence interval (CI). Where these intervals do not overlap with d = 0 or each other the effect or difference is significant. Treatments
marked with the same letter were not statistically different (P > 0.05). Sample size (n records) is indicated underneath each CI.
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3.4 Insecticides
In the meta-analysis, insecticides in MOA groups 9 (chordotonal
organmodulators), 17 (dipteranmolting disruptors), 18 (ecdysone

receptor agonists), and 28 (ryanodine receptor modulators) did
not increase adult phytoseiid mortality; all other groups had an
effect size > 0 (Fig. 4). Of these, Group 19 (octopamine receptor

Figure 3. Effect sizes (d) of different fungicide active ingredients on combined phytoseiid adult and juvenile mortality. Effect sizes are grouped by mode
of action, which is indicated at the top of the graph in capital letters, comparisons are made across all modes of action. Error bars indicate 95% boot-
strapped confidence interval (CI). Where these intervals do not overlap with d = 0 or each other the effect or difference is significant. Treatments marked
with the same letter were not statistically different (P > 0.05). Sample size (n records) is indicated underneath each CI.

Figure 4. Effect sizes (d) of different insecticide modes of action on phytoseiid adult mortality, juvenile mortality, fecundity, and egg hatch. Error bars
indicate 95% bootstrapped confidence interval (CI). Where these intervals do not overlap with d = 0 or each other the effect or difference is significant.
Treatments marked with the same letter were not statistically different (P > 0.05). Sample size (n records) is indicated underneath each CI.
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agonists) had the highest effect size. The next most harmful
groups were groups 1 (acetylcholinesterase inhibitors), 3 (sodium
channel modulators), 6 (glutamate-gated chloride channel allo-
steric modulators), and 21 (mitochondrial complex I electron
transport inhibitors, METI miticides) (Fig. 4). Juvenile mortality
results were similar, with groups 2 (GABA-gated chloride channel
antagonists), 3, 6, 21, and 23 (inhibitors of acetyl CoA carboxylase)
causing the highest mortality (Fig. 4). Only MOA groups 11 (Bt),
16 (type I inhibitors of chitin biosynthesis, buprofezin), 18 (ecdy-
sone receptor agonists), and 22 (voltage dependent sodium chan-
nel blockers) did not increase juvenile mortality.
The non-target effects of organophosphates (1), carbamates (1),

and pyrethroids (3) on phytoseiids are well-documented.23,38,45

Given the large effect size for octopamine receptor agonists in
our meta-analysis, surprisingly little is noted in the literature
regarding the toxicity of these insecticides to phytoseiids. Con-
versely, groups 6 and 21 are well-known for their toxicity to phy-
toseiids.44 These pesticides are frequently used for spider mite
control, but are more broad-spectrum and also control many
sucking pests.19 Groups 6 and 21 are among the most harmful
miticides to phytoseiids (see Section 3.5 Miticides). Our results
also highlight the more selective insecticide groups and agreed
with Fountain and Medd,42 who included Bacillus thuringiensis
(11), diflubenzuron (15), methoxyfenozide (18), and pymetrozine
(9) in a list of ‘most selective’ AIs.
All MOA groups reduced fecundity except groups 18 and

25 (METI II) (Fig. 4). The highest fecundity effects were seen in
groups 6, 13 (oxidative phosphorylation uncouplers), and 21.
Fecundity effects tended to vary more in highly toxic groups, such
as MOA groups 13 and 21 (Fig. 4). This could be because in assays
where a field rate is tested, few females survive, resulting in higher
variability due to low sample size. In groups where adult mortality
is high, fecundity reduction may be because "surviving" females
are moribund. Juvenile hormone mimics (6) had the strongest
effect on fecundity, which is not surprising, given the role of juve-
nile hormone in egg production in arthropods. Groups 1, 3, 5, 10,
21, 22, and 23 caused the greatest reduction in egg hatch. Of the
harmful groups, only groups 10 and 23 are designed to impact
arthropod reproduction or growth. These are both miticidal (see
Section 3.5 Miticides).

3.5 Miticides
Miticides with the greatest impact on adult mortality were ema-
mectin benzoate, milbemectin, cyhexatin, fenpyroximate, and
pyridaben (Fig. 5). Only clofentezine and spirodiclofen did not
increase adult mortality. Including those AIs, themiticides causing
the least adult mortality were hexythiazox, etoxazole, bifenazate,
spiromesifen, and cyflumetofen. The group 6, 21, and UN MOAs
caused higher mortality than the selective miticide groups
10, 12, 20, 23, and 25.
Fenpyroximate, spirotetramat, abamectin, and spiromesifen

caused the greatest reduction in fecundity (Fig. 5). Hexythiazox,
fenbutatin-oxide, and cyflumetofen did not reduce fecundity.
Etoxazole and bifenazate caused a significant, but minimal
decrease in fecundity. In general, miticides that caused high mor-
tality also reduced fecundity, but these effect sizes had high vari-
ance (Fig. 5). This is likely because few individuals survive field
concentrations of these AIs to be later assessed for fecundity.
Etoxazole, fenpyroximate, pyridaben, spiromesifen, and spirote-

tramat had the greatest effect on egg hatch (Fig. 5). Abamectin,
hexythiazox, fenbutatin-oxide, spirodiclofen, and cyflumetofen
did not reduce egg hatch. Within MOAs, acequinocyl and

bifenazate (group 20) were similar, but hexythiazox and etoxazole
(group 10) differed dramatically in egg hatch. Spiromesifen was
more harmful than spirodiclofen, with spirotetramat intermediate
(group 23). The least harmful miticides across all three effects
examined were hexythiazox, bifenazate, and cyflumetofen.
Mite growth inhibitors (group 10), organotins (group 12), and aver-

mectins (group 6) are among the oldest miticides still in common
use,19,46 with the exception of broad-spectrum insecticides that have
activity against mites (e.g. carbamates, pyrethroids). Historically, miti-
cide development and adoption has been driven by spider mite
resistance.46 Unfortunately, this has led tomany selective chemistries
falling out of use because they are no longer effective on the target
pest. For instance, the organotins and related compounds (propar-
gite) are known for their selectivity.30,47,48 The small effect sizes in
our meta-analysis for fenbutatin-oxide and propargite support this
(Fig. 5). However, the adult mortality effect size for cyhexatin was

Figure 5. Effect sizes (d) of acaricide active ingredients on phytoseiid
adult mortality, fecundity, and egg hatch. Effect sizes are grouped by
mode of action (MOA), which are indicated at the bottom of the graph.
Active ingredients have the same symbol color and shape in all panels.
Error bars indicate 95% bootstrapped confidence interval (CI). Where
these intervals do not overlap with d= 0 or each other the effect or differ-
ence is significant. Treatments marked with the same letter were not sta-
tistically different (P > 0.05). Sample size (n records) is indicated
underneath each CI.
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one of the highest. Like other organotins, cyhexatinwas considered a
selective miticide.49 Our results suggest it may be less selective than
other MOA 12 compounds, although effect size variation was large
and cyhexatin did not statistically differ from the other two com-
pounds. Unlike fenbutatin-oxide, cyhexatin is no longer in use due
to human health concerns. The use of fenbutatin-oxide and propar-
gite has dramatically declined since their entry into the market due
to resistance issues worldwide.46,48 However, they still comprise a
large portion of international miticide sales.46

Clofentezine and hexythiazox entered themarket in the 1980s and
hexythiazox alone dominated the miticide market from 1985 to
1990.46 Hexythiazox and clofentezine (MOA 10A) are well-known
for their selectivity to phytoseiids.30,44,47,48,50,51 In some cases, hex-
ythiazox even increased phytoseiid oviposition.44,51 A particular ben-
efit of these acaricides is that they sterilize spider mite eggs, which
can still be consumed by phytoseiids, allowing them to remain in
treated crops.47,48 Like the organotins, 10A acaricide use has
decreased due to widespread spider mite resistance.46

The chloride channel activators (avermectins, milbemectins; MOA
6) were introduced in the 1980s.46 Prior to registration, abamectin
over-use was cautioned against due to its impacts on predatory
mites and because its miticidal activity at low concentrations made
resistance development more likely.48 Initially, it was considered
selectively favorable because it was less toxic to phytoseiids than
pest mites.48,52 However, in crops where it was used intensively, spi-
dermite abamectin resistance developed in less than 10 years.53 The
MOA 6 compounds can cause substantial phytoseiid adult mortality
(Fig. 5), but past work on phytoseiids primarily focused on contact
toxicity. Abamectin provides good residual pest control due to trans-
laminar activity, but its surface residues degrade rapidly, which may
allow for survival of natural enemies.54,55 Therefore, field-level effects
on phytoseiids may be less severe for abamectin than miticides with
long-lasting residues. This is supported by research in apple, where
Typhlodromus caudiglans (Schuster) populations rebounded more
quickly in the abamectin treatment than other miticide treatments
(e.g. fenpyroximate, bifenazate), despite initial rapid population
decline (Bergeron and Schmidt-Jeffris, unpublished). Because of
widely reported abamectin resistance in spider mites56 and substan-
tial research showing significant harm to phytoseiids, it can no longer
be considered selective.
METI acaricides (MOA 21) also became available in the same

time period as the MOA 6 acaricides.46 Like previously popular
acaricides, they were heavily relied upon until spider mite resis-
tance developed (∼1990–2000), but are still in use.46 The METIs
are also more broad-spectrum and used to control piercing-
sucking insects. It is therefore unsurprising that these compounds
are also toxic to predatory mites (Fig. 5). Miticides in this group are
often found to be the most harmful.44,57–59

The 10Bmiticide, etoxazole, entered themarket shortly after the
MOA 6 and MOA 10A compounds.46 Unlike 10A miticides, etoxa-
zole (10B) is known for being harmful to phytoseiids, primarily
through reduced egg hatch. Our meta-analysis agrees with these
observations; etoxazole caused the greatest reduction in egg
hatch and was significantly different from hexythiazox (Fig. 5).
There is contradicting evidence on whether etoxazole should be
grouped with the other mite growth inhibitors, or whether it acts
as a chitin synthesis inhibitor and is similar to benzoylureas (MOA
15), in particular triflumeron.19,60 One study found that triflu-
meron reduces phytoseiid fecundity,61 but another study did
not.62 Another benzoylurea, novaluron, has been more thor-
oughly investigated. Novaluron is known to cause juvenilemortal-
ity, reduced fecundity, and reduced egg hatch in

phytoseiids.40,63,64 In orchards, novaluron applications can reduce
phytoseiid populations and disrupt spider mite biological con-
trol.65,66 Therefore, our current knowledge of how etoxazole and
benzoylureas impact phytoseiids also suggests they may have
similar activity.
Bifenazate and acequinocyl are among the newer acaricides, are

METI III pesticides (MOA 20),19 and became available shortly after
etoxazole. Both AIs are generally considered selective for phyto-
seiids;46 the label for bifenazate mentions its selectivity and lists
the specific natural enemy species it does not disrupt in the field.
Bifenazate and acequinocyl were among the least harmful AIs
examined in our meta-analysis (Fig. 5). Bifenazate has been suc-
cessfully used with augmentative releases of phytoseiids in field
tomatoes67 and strawberries68 and has been found to not disrupt
resident phytoseiids in hops.69 However, laboratory results testing
impacts of bifenazate or acequinocyl on various phytoseiid spe-
cies have been mixed.44 There is also evidence that bifenazate
can significantly decrease N. fallacis populations in watermelon70

and T. caudiglans populations in apple.10 Therefore, even selective
acaricides may be harmful, especially to more sensitive phytoseiid
species.44,71

Tetronic/tetramic acid derivatives (MOA 23) make up the largest
share of the worldwide miticide market.46 These miticides inhibit
fatty acid synthesis, resulting in toxicity to immature phytopha-
gous mites and reduction in fecundity and egg hatch in treated
females.19 Spirodiclofen is somewhat more selective than spiro-
mesifen and spirotetramat; the former is primarily used for con-
trolling phytophagous mites, whereas the latter two compounds
are also used for piercing-sucking insects.46 Our meta-analysis
also found spirodiclofen to be somewhat more selective to phyto-
seiids than the other MOA 23 acaricides; it was one of the only
miticides that did not cause an increase in adult or egg mortality,
based on overlap of its 95% CI with zero (Fig. 5). However, spirodi-
clofen did not significantly differ from the other tetronic/tetramic
acid derivatives in adult mortality effect size and did not differ
from spirotetramat in impacts on egg hatch (Fig. 5). All three miti-
cides hadminor impacts on adult mortality, whereas spiromesifen
and spirotetramat were among themost harmful to fecundity and
egg hatch (Fig. 5). Given that their primary activity is against
immature stages, more studies should be conducted examining
these effects for multiple phytoseiid species, as results seem to
be variable.44,59,72 Both spirotetramat73 and spiromesifen44 have
an unfavorable selectivity ratio when comparing phytoseiid and
spider mite toxicity in laboratory assays. While spirotetramat did
not harm released Amblyseius swirskii Athias-Henriot in pepper,74

it was associated with reduced N. fallacis populations in water-
melon.70 We are unaware of additional field studies examining
impacts of MOA 23 acaricides on phytoseiid populations. More
research is needed to determine if impacts on immature phyto-
seiids are substantial enough to disrupt biological control.
Cyflumetofen (MOA 25) is one of the newest miticides46 and is

marketed as selective. There are few studies on its impacts on
predatory mites, but all prior work indicates that it is one of the
most selective miticides available, even in worst-case-scenario,
laboratory exposures.44,75,76 In our meta-analysis, it was always
among the least harmful miticides and had no impact on fecun-
dity or egg hatch (Fig. 5). Because the role of phytoseiids in pre-
venting pest mite outbreaks is well-understood, it is also
established that new miticides should be both effective against
their target pest and not harmful to phytoseiids.19 Croft77 noted
that ‘Selectivity to predatory mites has become … a prerequisite
for a new acaricide’ and that selectivity had become a key point
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Figure 6. Effect sizes (d) of the eight insecticide modes of action (MOAs) most represented in the dataset on phytoseiid adult mortality by species. Spe-
cies within the same genus have the same symbol shape and color. Error bars indicate 95% bootstrapped confidence interval (CI). Where these intervals
do not overlap with d = 0 or each other the effect or difference is significant. Treatments marked with the same letter were not statistically different
(P > 0.05). Sample size (n records) is indicated underneath each CI. Ps.= Phytoseius, P. = Phytoseiulus.
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in advertising new chemicals, which was due to the demonstrated
economic benefits: conservation of predatory mites saves
growers money.77 As new miticides are developed, it will likely
be with an eye towards further increasing selectivity.

3.6 Species identity
This analysis examined differences between species in adult mor-
tality for the eight most tested MOA groups. Older MOAs (groups
1 and 3) had a greater variety of species tested than new MOAs
(Fig. 6). Within the entire meta-analysis database (all MOA groups,
effect types), the most common species tested were Phytoseiulus
persimilis Athias-Henriot, N. californicus, N. fallacis, G. occidentalis,
and T. pyri. This is likely due to their importance in augmentation
in glasshouses (P. persimilis,N. californicus, N. fallacis) or their dom-
inance in perennial crops that rely on selective pesticide applica-
tions to maintain biological control (N. fallacis, G. occidentalis, T.
pyri). There were no differences between species in adult mortal-
ity for MOA 12, 15, or 21 (Fig. 6), potentially indicating that current
knowledge of these non-target effects may generalize across
many species.
For MOA 1, the most sensitive species were Transeius tetranychi-

vorus (Gupta), Euseius rubicolus (van der Merwe & Ryke),
E. stipulatus (Athias-Henriot), E. victoriensis (Womersley), Neoseiu-
lus longispinosus (Evans), P. persimilis, and Typhlodromus doreenae
Schicha. Galendromus occidentalis and N. californicus were the
least sensitive; the effect size CI for G. occidentalis included zero
(Fig. 6). There was less variability between species in phytoseiid
response to pyrethroids (MOA 3). The most sensitive species were
Amblyseius andersoni (Chant), E. stipulatus, and Phytoseiulus
macropilis (Banks) (Fig. 6). The least sensitive species were Typhlo-
dromus pyri, G. occidentalis, Phytoseius macropilis (Banks), and
Kampimodromus aberrans (Oudemans). For the remaining MOA
groups (4, 5 and 6), differences between species were relatively
minor (Fig. 6). Phytoseiulus macropilis was less sensitive to neoni-
cotinoids (MOA 4) than most other species tested, but the sample
size was relatively small and all records used represent one popu-
lation. Kampimodromus aberrans was more sensitive to spinosyns
(MOA 5) than most other phytoseiids and A. swirskii was less sen-
sitive to MOA 6 insecticides (Fig. 6).
Prior work has compared pesticide sensitivity between small

groups of phytoseiid species. Several previous studies have found
P. persimilis to be the least sensitive when compared to other
phytoseiids,23,44,78 but a study comparing citrus phytoseiids
found P. persimilis to be the least pesticide tolerant (versus
E. stipulatus or N. californicus).72 Our meta-analysis suggests
P. persimilis is moderately sensitive to pesticides (Fig. 6), but this
varies with the MOA group tested. Prior literature has ranked
N. fallacis44 and A. andersoni79 among the more sensitive species,
which is somewhat consistent with the meta-analysis results
(Fig. 6). Like the meta-analysis (Fig. 6), prior work has regularly
found G. occidentalis to be less pesticide sensitive than other phy-
toseiids, particularly in regards to MOA 1 insecticides.10,71,80

Lack of pesticide sensitivity inG. occidentalis is likely due to resis-
tance development; field-selected resistance to azinphosmethyl,
carbaryl, and a variety of pyrethroids has been well-documented
in this species.81,82 Phytoseiids appeared to be more similar in
their response to newer MOAs compared to older MOAs (Fig. 6).
This may indicate that many observed differences between spe-
cies are due to resistance development, which is more likely to
have occurred in older pesticides. However, the pesticide expo-
sure history of the population used in each study was not always
described, so it is impossible to be certain if differences between

species are due to differences in innate susceptibility or resis-
tance. It is also difficult to determine which factors have the great-
est influence on phytoseiid resistance development. For instance,
phytoseiid species from perennial crops may be more likely to
develop resistance than those from annual crops because their
more stable habitat results in yearly exposure of the same popula-
tions; phytoseiid mites on tree fruit were the first insecticide-
resistant natural enemies discovered.83,84 Conversely, species of
phytoseiids commonly used in augmentation may appear more
sensitive if insectary-reared populations that are pesticide-naïve
are tested.

3.7 Lifestyle type
Diet specialization may also affect both innate susceptibility and
resistance development to pesticides. Phytoseiids have been
classified into four categories based on diet specialization
(Types I–IV).27,28 Type I species are the most specialized, thriving
primarily on Tetranychus spp. spider mites, Type II prefer Tetrany-
chus, but will consume other species of tetranychids and other
mite prey, Type III tend to prefer non-webspinning spider mites
or are insect predators and can reproduce on pollen diets, and
Type IV species are specialized pollen feeders and generalist pred-
ators.27,28 In our meta-analysis of adult mortality, generalists
tended to be more sensitive than specialists; Type II phytoseiids
were less sensitive than Type IIIs, which were less sensitive than
Type IVs (Fig. 7). Type I phytoseiids were intermediate in pesticide
sensitivity to Types II and III.
Prior reviews have reached opposite conclusions regarding the

propensity of resistance development in specialist versus general-
ist phytoseiids. Generalists are more likely to feed on plant prod-
ucts and therefore more likely to encounter plant toxins,
potentially preadapting them to pesticides.38 It has also been
argued that specialist predators are less likely to develop resis-
tance because they cannot survive without the presence of prey,
which would die after a pesticide application.38 However, this fails
to account for the ability of Tetranychus spp. (particularly Tetrany-
chus urticae Koch) to rapidly develop resistance to pesticides. Pro-
vided that the prey develop resistance first, specialist predators
then also can develop resistance. Therefore, close association with

Figure 7. Effect sizes (d) for all pesticide effects on adult mortality for the
four phytoseiid lifestyle types. Error bars indicate 95% bootstrapped confi-
dence interval (CI). Where these intervals do not overlap with d = 0 or each
other the effect or difference is significant. Treatments marked with the
same letter were not statistically different (P > 0.05). Sample size
(n records) is indicated underneath each CI.
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Tetranychus could increase the likelihood that specialist phyto-
seiids develop resistance.8 Evidence for this has been found in
perennial agroecosystems that are minimally sprayed, where phy-
toseiid communities are dominated by generalists and spider
mites are not abundant.18,85 The results from our meta-analysis
support that diet specialization on Tetranychus spp. is associated
with either low innate pesticide sensitivity or higher incidence
of resistance development (Fig. 7). Future work should directly
compare phytoseiid species from similar systems for pesticide
resistance to determine the extent to which this occurs. Studies
could also compare mechanisms of pesticide detoxification in
related phytoseiid species with different diet specializations.

4 CONCLUSIONS
As new pesticides are adopted and as new phytoseiid species are
reared for augmentation or determined to be important for conserva-
tion biocontrol, agricultural researchers and biological control practi-
tioners must constantly renew the pesticide non-target effects
literature.42 Our meta-analysis shows that general recommendations
about specific pesticides or pesticide groups can be made, but also
highlights that the unique biology of some species may contradict
overall trends. Additional research on pesticide non-target effects on
phytoseiids should focus on herbicides, sublethal effects, and the
newer insecticide/miticide MOAs, which are understudied. Prior work
has also heavily focusedon a short list of phytoseiid species, themajor-
ity of which are Tetranychus spp. specialists. Research on additional
species, especially Type IV phytoseiids, will be needed as the role of
generalist phytoseiids in agroecosystems becomes better understood.
In focusing on the most common and more standardized type of

non-target effects testing, direct sprays or fresh residues, our meta-
analysis results are limited in that they do not account for residue
duration; some pesticides degrade more rapidly in the field than
others. Additionally, these assays do not test imperfect pesticide cov-
erage, which creates unsprayed refuges that can interact with phyto-
seiid behavior via repellency to potentially alter outcomes of field
applications.86 Furthermore, in specialist phytoseiids, effective miti-
cides may eliminate prey, resulting in local predator extinction,
despite no harmful effects in assays. These complicating factors make
it difficult to predict how pesticides will impact natural enemies and
secondary pest outbreaks.87 This further emphasizes the need for
ongoing summaries of pesticide non-target effects trends, but also
highlights the importance of field studies testing specific key natural
enemy and pest combinations in many agroecosystems.
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