

Netting Applications for Direct Apple

Pest Control

Orchard Pest and Disease Management Invasive Species Thursday, 11 Jan. 2018, 2:45pm Portland, Oregon Adrian Marshall & Elizabeth Beers Washington State University Tree Fruit Research & Extension Center 1100 N Western Ave, Wenatchee, WA

Fruit Disorder

(Racsko and Schrader, 2012)

- Sunburn is one of the leading causes of culled apples in Washington State (Schrader et al., 2006).
- Sunburn occurs when fruit skin temperatures reach 115F, which can happen at ambient temperatures of 86F or higher (Schrader et al., 2001).
- To counteract sunburn, orchardists use evaporative cooling, kaolin clay sprays, and shade netting.

Netting Over Orchards

Top-cover only

 Currently the most effective method for reducing sunburn (Gindaba and Wand, 2005).

Multiple Functions

- ✓ Minimize heat stress
- ✓ Eliminate overhead cooling
- ✓ Equipment Access
- ✓ Reduces worker exposure to UV and heat stress
- ✓ Excludes vertebrate (birds/deer)
- ✓ Exclude insects

Obj. 1: Ability to exclude direct pests

Codling moth

Consperse stink bug

Obj. 2: Effects on indirect pests and natural enemies

- Does netting affect predator/prey population dynamics?
- Indirect Pests: Woolly apple aphid
- Natural Enemies: Aphelinus mali, Lacewings, Syrphids, Earwigs

Materials and Methods

Small Cage: 10- 10'x10'x5' Cages 3 trees/plot

3 treatments:

- 1. Cage+ Airblast
- 2. Airblast
- 3. Control (no treatment)

Large Cage:

4- 40'x50'x15' Cages 48 trees/plot

Moth Exclusion

- Large resident population
- Pheromone traps deployed in all treatment plots
- Replaced every week from 26 Apr-11 Oct

Mark and Recapture

Density Tracking

- Determine treatment effects on seasonal abundance of pests and natural enemies
- Traps deployed and replaced every two weeks from 3 May 11 Oct, 2017
 - *Time counts were conducted for woolly apple aphids

2017 Results

Conclusions

- Full enclosures significantly reduced direct pest damage two years in a row.
- They also resulted in large outbreaks of woolly apple aphids.

Drawbacks

• Recorne plaigesticatallationnisimestatible

Efficacy of a barrier at orchard border

- Only net the border of an orchard.
- Still a partial barrier to wildlife.
- May disrupt stink bug movement.

Biology

Washington native stink bugs stay on natural vegetation for the majority of their lives.

Behavior

Migration into orchards is associated with vegetation senescence.

Objectives

Obj. 1: Determine when and how stink bugs migrate into orchard.

Obj. 2: Examine mechanical exclusion as a control tactic.

Materials and Methods

Obj.1: Assembled 5 (6 x 10 ft) sticky barriers. Recorded and removed stink bugs every 4 days Analyze height data

Materials and Methods

Experimental Design

Obj.2: Constructed 4 (150 x 15 ft) shade net barriers. Recorded stink bugs on each side of net every 4 days. Analyzed seasonal migration habits.

Results

Discussion

Overall the barrier study was inconclusive as very few stink bugs were captured in orchards.

Stink bugs were present in orchards as early

Acknowledgements

Crew of 2017

L to R, back: Chris Sater, Peter Smytheman, Bruce Greenfield, Jim Hepler, Josh Milnes, Adrian Marshall, Lonie Nottingham, Molly Darr Front: Thomas Smytheman, Brooklyn xxxxx, Allie xxxx, CJ Squires, Kayla xxxx, Betsy

