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ABSTRACT. Complex changes in gene expression occur during postharvest storage of apple (Malus ·domestica) and
often precede or accompany changes in ripening and disorder development. Targeted gene expression analysis
fundamentally relies on previous knowledge of the targeted gene. Minimally, a substantial fragment of the gene
sequence must be known with high accuracy so that primers and probes, which bind to their targets in
a complimentary fashion, are highly specific. Here, we describe a workflow that leverages publicly available
transcriptome data to discover apple cultivar–specific gene sequences to guide primer design for quantitative real-
time polymerase chain reaction (qPCR). We find that problematic polymorphisms occur frequently in ‘Granny
Smith’ and ‘Honeycrisp’ apple when candidate primer binding sites were selected using the ‘Golden Delicious’
genome. We attempted to validate qPCR-based gene expression measurements with RNA sequencing (RNA-Seq)
analysis of the same RNA samples. However, we found that agreement between the two technologies was highly
variable and positively correlated with the similarity between cultivar-specific genes and RNA-Seq reference genes.
Thus, we offer insight that 1) improves the accuracy and efficiency of qPCR primer design in cultivars that lack
sufficient sequence resources and 2) better guides the essential step of validation of RNA-Seq data with a subset of
genes of interest examined via qPCR.

Physiological disorders of apple that develop during storage
contribute to significant postharvest losses (up to 30% cullage),
causing significant economic losses for the apple industry
(Bramlage andWatkins 1994;Doerflinger et al., 2015;Rosenberger
et al., 2001). Our understanding of the molecular mechanisms
of postharvest tree fruit disorders is continuously evolving
(Johnson and Zhu 2015; Leisso et al., 2015; Lum et al., 2016;
Sevillano et al., 2009). Disorder incidence and severity is often
cultivar dependent, with some cultivars being predisposed to
specific physiological defects over the course of long-term

storage (Larrigaudi�ere et al., 2016). Examining changes in gene

expression during the postharvest period will 1) shed light on
the molecular mechanisms underlying the physiology of tree
fruit disorders; 2) be useful in classifying disorder susceptibility;
3) act as a guide for new storage strategies; and 4) improve risk
assessment and management before, during, and after storage
(Duan et al., 2017; Leisso et al., 2016; Nham et al., 2015).

Global-scale gene expression analysis afforded by second-
generation sequencing of mRNA allows the activity of all genes
to be monitored simultaneously. This powerful approach has
been used extensively to deepen our understanding of numer-
ous plant processes (Thudi et al., 2012; Voelckel et al., 2017;
Wang et al., 2009). However, a primary limitation to gene
activity measurements for both targeted (e.g., qPCR) and
untargeted (e.g., RNA-Seq) techniques is accurate previous
knowledge of gene sequences. As more genomes become
available for important crop species, recently so for rosaceous
specialty crops such asMalus (Daccord et al., 2017; Velasco et al.,
2010), Prunus (Ahmad et al., 2011), Pyrus (Chagne et al., 2014;
Wu et al., 2013), and Rubus (VanBuren et al., 2016; Ward et al.,
2013), this wave of gene discovery can be leveraged for enhanced
gene expression analysis. However, genetic diversity among
cultivars in these specialty crops can cause a loss of fidelity in
gene expression measurements due to cryptic polymorphisms or
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mismatches in primers/probes or digital gene expression reference
sequences (Clark et al., 2007; Takahashi et al., 2009). Develop-
ment of detailed and accurate knowledge of cultivar-specific gene
sequences that recover this loss in fidelity is an essential step to
obtain highly accurate estimates of gene expression in non-
sequenced cultivars of interest. This is especially relevant in
duplicated and highly heterozygous plant genomes like apple
(Daccord et al., 2017; Velasco et al., 2010), where differentiation
of highly similar but unique genes (and alleles) is challenging and
requires highly accurate sequence information.

qPCR is the reference standard for gene expression analysis,
as the detection of transcripts is direct—oligo nucleotide
primers and/or probes physically bind to a cDNA sequence of
interest (Arya et al., 2005; O’Driscoll 2011; Wong and
Medrano 2005; Wu et al., 2014). The highly accurate and
highly sensitive nature of this interaction is a key feature of the
technology, making it robust for the differentiation of highly
similar sequences, even down to single-nucleotide polymor-
phisms (SNPs) (Gehring and Geider 2012; Jatayev et al., 2017).
High specificity makes this technique susceptible to cryptic
polymorphisms when, for instance, the genome of one cultivar
is used for primer or probe design for another genetically
distinct cultivar. The reliance on accurate previous knowledge
of gene sequences has long been acknowledged as a hurdle for
gene expression analysis (Freeman et al., 1999).

To create cultivar-specific and robust qPCR primers for
targeted gene expression analysis, we assembled transcrip-
tomes de novo from publicly available data for two apple
cultivars (Granny Smith and Honeycrisp). We selected candi-
date genes using two different strategies; a forward approach in
which we selected gene targets from published results (de
Freitas et al., 2010, 2011) that implicated genes in a disorder of
interest, and a reverse approach in which we selected genes
with expression that was correlated with disorder incidence in
a previous publication (Gapper et al., 2017). Using these
candidates, we developed an efficient workflow (Fig. 1) that
includes de novo assembly, contig selection, transcript valida-
tion, informed primer design, and qPCR assay validation. For
validated transcripts, our qPCR assay success rate exceeded
95%. In addition to efficient primer design, we identified
cultivar-specific polymorphisms affording a deeper under-
standing of how genes of interest in specific cultivars may
contribute to the development of physiological disorders. We
also developed strategies to enhance the necessary qPCR
validation of RNA-Seq data to provide more meaningful
interrogation of changes in global gene expression during
postharvest storage of apple.

Materials and Methods

TRANSCRIPTOME ASSEMBLY USING PUBLIC DATA. Transcrip-
tome data were retrieved from the Sequencing Read Archive
(SRA) at the National Center for Biotechnology Information
[NCBI (National Institutes of Health, 2018)] in compressed
SRA archive format using the prefetch command. Archives
were validated with the vdb-validate command, and archives
were extracted with the fastq-dump command using the SRA
Toolkit v2.8.2-1 (National Institutes of Health, 2018). The
‘Granny Smith’ apple fruit peel transcriptome was reported in
Gapper et al. (2017) (SRA experiment SRP100589). The
‘Honeycrisp’ apple fruit peel transcriptome was reported in
Leisso et al. (2016) (SRA experiment SRP081273).

Raw fastq data from the aforenamed NCBI SRA archives
were quality trimmed and adapter filtered (referencing TruSeqv3
adapters; Illumina, San Diego, CA) using CLC Genomics
Workbench 9.5.3 (QIAGEN, Hilden, Germany) with default
parameters (e.g., trim bases less than Q20) except that all
ambiguous bases were trimmed. The CLC Genomics Work-
bench 9.5.3 Toolkit de novo sequencing > de novo assembly
function was used for de novo assembly with default parameters,
except minimum contig length was decreased to 200 bp to allow
inclusion of as many transcripts (and fragments thereof) as
possible in our BLASTn searches. See Supplemental Table 1 for
assembly statistics.

IDENTIFICATION OF CULTIVAR-SPECIFIC GENE SEQUENCES USING

BLAST. Gene sequences from two versions of the apple
genome appear in this manuscript. Apple V1 refers to the
genome of the commercially produced ‘Golden Delicious’
apple [Velasco et al., 2010; specifically: Malus ·domestica
Whole Genome v1.0.p - Assembly and Annotation at the
Genome Database for Rosaceae (GDR) (Jung et al., 2014)].
Apple V2 refers to the genome of a ‘Golden Delicious’
double haploid from INRA breeding efforts in the 1960s
[Daccord et al., 2017; specifically: Malus ·domestica GDDH13
v1.1 - Assembly and Annotation at GDR (Jung et al., 2014)]. The
steps described to follow were performed with both Apple V1
and Apple V2 (beginning with the BLASTn search of de novo
assembly databases). Because the annotations of these two
genomes have not been reconciled, we used Apple V1 transcripts
to identify best matches to Apple V2 transcripts.

Initially, 28 candidate apple genes for ‘Granny Smith’ and
14 for ‘Honeycrisp’ were selected for this analysis (see
Supplemental Files 1 and 2, final lists in Tables 1 and 2). To
create our ‘Granny Smith’ candidate list, we used Apple V1
gene IDs fromGapper et al. (2017) to retrieve coding sequences
(CDS) from GDR. To create our ‘Honeycrisp’ candidate list,
clone sequences from de Freitas et al. (2010, 2011) were
retrieved from GenBank (Benson et al., 2012) using the
published NCBI clone accession numbers, or using best hits
to the M. ·domestica expressed sequence tags (ESTs; the
referenced University of California at Davis URL to retrieve
ESTs was not found—see Supplemental Table 2). Apple V1
was then queried with BLASTn (via GDR, default parameters,
excluding hits <95% identity) to retrieve best matching ‘Golden
Delicious’ CDS sequences for each ‘Honeycrisp’ candidate.
For those that did not result in good matches to Apple V1 genes,
the NCBI annotation of M. ·domestica was similarly searched
using BLASTn (see Supplemental File 3 and Supplemental
Table 2).

BLASTn (built into CLC Genomics Workbench 9.5.3) was
used to build nucleotide BLAST databases from the de novo
transcriptome assemblies for each cultivar of interest. To
retrieve cultivar-specific gene sequences, we used the known
‘Golden Delicious’ apple gene sequences to search each
respective nucleotide BLASTn database. BLASTn parameters
were default (including setting the e-value threshold to 1–10 and
enabling the ‘‘low complexity filter’’), except that the maximum
number of hits was reduced from 250 to five. For each gene, we
selected de novo contigs from the multiple BLASTn hits that
had the best combination of high percent identity (80% to
100%), greatest subject coverage, and highest bit score. Known
apple genes that did not produce sufficiently long, high-identity
hits were excluded from further analysis. When a BLASTn
search produced multiple good hits (e.g., two �600 bp, >95%
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identify alignments to distinct portions of the query sequence),
these hits were taken into subsequent steps in the analysis and
either manually assembled for validation [e.g., HC_02 (see
Supplemental Fig. 1)], excluded based on failure of PCR
validation, or the higher identity match was chosen. The

selected contigs and Apple V1 and V2 transcripts were
imported into Geneious v10.1.2 (Kearse et al., 2012) for further
analysis and primer design.

GLOBAL ALIGNMENTS OF REFERENCE GENES AND DE NOVO

CONTIGS. Alignments of each qualifying BLASTn hit to the

Fig. 1. Workflow for quantitative real-time polymerase chain reaction (qPCR) primer design. This workflow uses the ‘Golden Delicious’ reference genome and
cultivar-specific de novo assemblies for enhanced qPCR primer design, with applications for gene expression and RNA Sequencing (RNA-Seq) – qPCR cross
validation. PCR = polymerase chain reaction.
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query sequence was done using the Align/Assemble > Pairwise/
Multiple Align function in Geneious (see Supplemental File
4). Multiple alignment algorithms were used to produce
alignments that were then curated by hand. Generally, the
‘‘Geneious Alignment’’ and ‘‘MUSCLE Alignment’’ options
performed well, but we note that the quality of the alignment
depended heavily on sequence characteristics and therefore
an exploration of aligner settings is prudent. Instances of
ambiguities, SNPs (e.g., bp mismatches with regard to primer
binding), splice variants, and insertions/deletions were
recorded for each candidate. For all contigs, open reading
frames were identified and translated for subsequent protein
alignments to verify the CDS. Protein alignments were exam-
ined to find changes in the encoded proteins. For reference
genes that lacked nucleotide ambiguity codes (common in the
454-based Apple V1), EMBOSS 6.5.7 (Rice et al., 2000) was

used to predict secondary protein structure to scan for differ-
ences via a Geneious plugin.

TISSUE HANDLING AND QUALITY CONTROL. ‘Granny Smith’
peel tissue was removed from fruit at or shortly after harvest
using a vegetable peeler. Three evenly spaced peels cut from
the stem end to calyx end (sections of�20 · 3 cm) of each apple
fruit were immediately flash frozen on liquid nitrogen and
stored at –80 �C. Four samples in biological triplicate (a total of
12 observations—each replicate was a pool of tissues from six
fruit) represent a short time course sampling scheme in the first
2 weeks of 1 �C air storage. ‘Honeycrisp’ peel and cortical
tissue were collected from individual apples after about 6
months of storage at 1 �C in air using a 4-mm biopsy punch to
an approximate depth of 6 to 8 mm, where the peel was
immediately separated from the cortex using a razor blade and
both tissues immediately frozen separately in liquid nitrogen,

Table 1. Summary of ‘Granny Smith’ candidate genes.z

Apple V1 ID ID qPCR primers Gene description

MDP0000145813 GS_01 Fwd CGCAAAAAGAAGTGTTGGCC UDP-glycosyltransferase superfamily protein
Rev GCGTGCAAATCATAGGGACC

MDP0000150382 GS_02 Fwd ATGGGAGATGACAAGGATGG UDP-glucosyltransferase 74F2
Rev TGTTATCCGAAGTGCCACC

MDP0000165325 GS_03 Fwd CCTCGTACAACAACCGATACG Unknown function
Rev TTGCTTGTGACCCATCTGC

MDP0000203897 GS_04 Fwd CTAGCCAACACCATCTTCATCG UDP-glucosyltransferase 74F2
Rev CAAATCCGCCTTCATCGTAGC

MDP0000215525 GS_05 Fwd ACGGTCGAGATGGCAAAGC UDP-glucosyl transferase 71B6
Rev TCAGTGTTGGTGAATGGTTGGG

MDP0000275383 GS_06 Fwd GAGCACCACATCAACAAGC Aldolase-type TIM barrel family protein
Rev CCTTTCGTCCGGATCATCG

MDP0000292164 GS_07 Fwd AGTAGGATGTCTTAGCGTGC ASP1 - aspartate aminotransferase 1
Rev CAGGTGGGTTACTATACATGGG

MDP0000551974 GS_08 Fwd TGTCACATATCCGGCTCAAGG Indole-3-acetate beta-D-glucosyltransferase
Rev GATGATGGGCTGAGAGACTGG

MDP0000564193 GS_09 Fwd TACGAGGAATGGGCTGTCG Senescence-associated gene 21
Rev GATCAGAGGACGGAGGAACC

MDP0000617956 GS_10 Fwd AGGTGTTTGGAGTTGGTCATGG Indole-3-acetate beta-D-glucosyltransferase
Rev CTTCACTCACAGCCTCTCTTGC

MDP0000688645 GS_11 Fwd TTGTGCTCTATGACACCAAGGC Aluminum-induced protein with YGL and LRDR motifs
Rev CACCACCGAACCATCTACTGC

MDP0000748916 GS_12 Fwd ACACTGGTTTGCAGCTTTGG RmlC-like cupins superfamily protein
Rev TCTGCCCTAGTTATGTCCTTGC

MDP0000755567 GS_13 Fwd TACGAGGAATGGGCTGTCG Senescence-associated gene 21
Rev GATCAGAGGACGGAGGAACC

MDP0000858559 GS_14 Fwd AGGAGGGGAGAACAAGAGC Seed maturation protein
Rev CTCCACCTTGTCTTCGAGC

MDP0000940411 GS_15 Fwd CGACTTTGTTGGACAGAATGGC AOX1B - alternative oxidase 1B
Rev ACTGCTGCCACTGTTTCTAGC

MDP0000274900 GSR_01y Fwd CAAGGACTGAAAGCGGGAAC CKL2 - casein kinase 1-like protein 2
Rev GGATACCCACGGCATAATGC

MDP0000173025 GSR_02x Fwd CCATATCCAGGCTTGCCTAA LTL1 - lipid transport superfamily protein
Rev ACGAGGGTAACCTCACATGC

MDP0000223691 GSR_03w Fwd CATATTTGGCAGCAGAGCAA Histone 1
Rev CTCGTTAGCCAACTGCATCA

zAll ‘Granny Smith’ gene candidates were selected from Gapper et al. (2017). Annotations were obtained from Phytozome v12 (Joint Genome
Institute, 2018). qPCR primers were designed in Geneious using the Primer3 plugin. Reference genes were selected from the indicated sources
(descriptions were transferred from sources).
yPerini et al. (2014).
xBowen et al. (2014).
wStorch et al. (2015).
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then stored at –80 �C. Four samples, in biological triplicate (a
total of 12 observations—where each replicate was a pool of
tissues from 10 fruits) represent peel and cortical tissues each
from fruit with and without bitter pit lesions. RNA was
extracted using a CTAB/chloroform protocol modified specif-
ically for pome fruit tissue (Honaas and Kahn, 2017). Extracted
RNA was analyzed for quantity and purity using a spectrophotom-
eter (NanoDrop ND-1000; Thermo Fisher Scientific, Waltham,
MA) and for quantity and integrity on an automated electrophoresis
system (Bioanalzyer 2100 G2938C; Agilent Technologies, Santa
Clara, CA)with theAgilent-RNAPicoKit (catalog no. 5067-1513).
Only RNA that met the following standards were used for
downstream analysis: A260/A280 �2.0, RNA integrity number of
$8.0.

CANDIDATE GENE TRANSCRIPT VALIDATION. Putative cultivar-
specific transcripts (i.e., de novo contigs) were verified by PCR
where the amplicon size was maximized to capture as much of

the putative transcript as possible. PCR primers were designed
in Geneious using Primer3 v2.3.4 (Untergasser et al., 2012). For
each candidate gene transcript, five to 10 primer pairs were
designed using the parameters found in Table 3. Primer pairs
were selected based on closest melt temperature (Tm), lowest
hairpin and dimer Tm, longest sequence length, and percent GC
content closest to 50%. Preferred primer pairs for each putative
transcript were then BLASTn searched against all de novo
contigs to ensure primer binding specificity. In instances in
which primer pairs matched multiple contigs, new primer pairs
were selected and checked in the same manner until each
primer pair had a unique target in the respective de novo
transcriptome assembly. Primers were synthesized by Inte-
grated DNA Technologies (IDT, Coralville, IA), dissolved in
qPCR-grade water (catalog no. W4502; Sigma-Aldrich, St.
Louis, MO) to produce 100 mM solutions, and stored at –20 �C.
Recommendations by IDT were used for calculating final Tm.

Table 2. Summary of ‘Honeycrisp’ candidate genes.z

Apple V1 ID ID qPCR primers Gene description

MDP0000141033 HC_01y Fwd TTTGTCGATGGTTGGACC Pectin methylesterase 44
Rev GGCATCTGTAGAACACCG

NA HC_02y NA NA
NA HC_03y Fwd GATCACGTACATCCACATGG NA

Rev CACCTGGGATGTAATGACG
MDP0000141033 HC_04y NA Pectin methylesterase 44
MDP0000326734 HC_05y Fwd GGAAGCTCAACACAATCACC ADPG2,PGAZAT- polygalacturonase

Rev CTCCACTGGAAGAACAAGC
MDP0000416548 HC_06y Fwd GTTGAATGGGTAGAAGGACC BGAL12 - beta-galactosidase 12

Rev CACGCTCTGTCCATTTATCC
MDP0000718765 HC_07y Fwd TTGGGGCATAGTGATTCG Pectin lyase-like superfamily protein

Rev AGCGTACATCTCCCAATGG
MDP0000289952 HC_08y Fwd TTCCAACAACCTCCTCTCC CAX5 - cation exchanger 5

Rev ACAGCCATACAAGCTCTC
MDP0000165349 HC_09x Fwd GCTGTTATGTTCGCCATG CAX5 - cation exchanger 5

Rev GAAAAGTGTCGCTGTCTC
MDP0000320927 HC_10y Fwd CTTTTAGTGCTCGGATGTGC CAX2 - cation exchanger 2

Rev CGTAAAATGAAGCACAGCCG
MDP0000230664 HC_11y Fwd GGTGATATAGAGGTTTCTGG CIF1 - autoinhibited Ca(2+)-ATPase 10

Rev TTTCTCAGAGTTGAATGGG
MDP0000121822 HC_12y Fwd CTGTTAATGTTGCCGCTC ACA9 - autoinhibited Ca(2+)-ATPase 9

Rev GTTGTCTGTAGGTGGTTCG
MDP0000248012 HC_13y Fwd GGCCAACACTTCTAACATGC VHA-A - vacuolar ATP synthase subunit A

Rev GAAATCTCACGCAATGCC
MDP0000022745 HC_14y Fwd CTGTACTCATGACCGTTGG AVP1 - Inorganic H pyrophosphatase

Rev CAATGATAAGGCCAGCCC
MDP0000213603 HCR_01w,t Fwd CTCTTCTTGCTTTCACCC EF1-alpha

Rev GTACCCAACCTTCTTCAG
MDP0000095375 HCR_02v,t Fwd GAATCAGCAGCAGAGATG CKB4 - casein kinase II beta subunit 4

Rev GATATCCGACTGGCCAAC
MDP0000223691 HCR_03u,t Fwd CAGGTAGGTTGAGAAGGC Histone-1

Rev TGATCTGTATTCTGCTTCGG
z‘Honeycrisp’ candidates were selected from the literature. Annotations were obtained from Phytozome v12 (Joint Genome Institute, 2018).
qPCR primers were designed in Geneious using the Primer3 plugin. Reference genes were selected from the indicated sources (descriptions were
transferred from sources).
yde Freitas et al. (2010).
xde Freitas et al. (2011).
wPerini et al. (2014).
vBowen et al. (2014).
uStorch et al. (2015).
tPrimers designed based on contigs.
qPCR = quantitative real-time polymerase chain reaction
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Total RNA (1 mg) was converted to cDNA using qScript
(catalog no. 95048-025; QuantaBio, Beverly, MA) for ‘Granny
Smith’ and iScript (catalog no. 1708840; Bio-Rad Laboratories,
Hercules, CA) for ‘Honeycrisp’. Template amounts were
generally between 5 and 10 ng but were variable depending
on amplicon yield. For ‘Granny Smith’, PCRs were run on
a thermocycler (T100, catalog no. 1861096; Bio-Rad Labora-
tories) using KAPA2G Fast ReadyMix (catalog no. KK5021;
Roche, Basel, Switzerland) and the manufacturer’s suggested
reaction protocol. For ‘Honeycrisp’, PCRs were run on a ther-
mocycler (Veriti 96-Well, catalog no. 4375786; Applied Bio-
systems, Foster City, CA) (using the gradient feature) using
EconoTaq PLUSGREEN 2XMaster Mix (catalog no. 30033-1;
Lucigen, Madison, WI) with the manufacturer’s suggested
protocol. Annealing temperatures predicted by Primer3 and
IDT ± 1.0 �C defined the gradient range for all reactions. All
PCRs were checked on 1.5% Tris-acetate-EDTA (TAE) or
Tris-borate-EDTA (TBE) agarose gel. In situations in which at
least one reaction yielded a single, expected-size product, the
reaction was considered a successful validation of the tran-
script. Reactions that failed to generate a product, generated the
wrong-sized product, or resulted in multiple products were re-
run with the same reagents using touch-down protocol (touch-
down PCR) where the initial annealing steps (for 10 to 15
cycles, less 0.5 �C each cycle) were�10 �C higher than the final
annealing temperature. After touch-down PCR, any reaction
that still failed to produce a clean product resulted in removal of
the gene from the study.

In most cases, overlapping contig alignments were either easy
to manually assemble (100% identical alignment overlap >30 bp
required) or clearly different genes. In cases in which overlapping
contig alignments were clearly different transcripts, the best was
chosen for primer design and downstream analysis. In one instance
(Supplemental Fig. 1) in which multiple short contigs aligned to
query sequences with a substantial gap, the intervening sequences
were determined by amplicon sequencing. The QiaQuick Gel
Extraction kit (catalog no. 28704; QIAGEN) was used to extract
gel-purified amplicons from PCR validation reaction (described
previously) and was sequenced by Retrogen (San Diego, CA).

QPCR AS SAY DE S IGN AND

EXECUTION. Apple reference genes
identified specifically as suitable
reference genes for gene expression
studies of tree fruits were selected
from the literature (Tables 1 and 2;
Supplemental Table 2). The follow-
ing reference genes from Apple V1
MDP0000274900 (Perini et al.,
2014), MDP0000173025 (Bowen
et al., 2014), and MDP0000223691
(Storch et al., 2015) were used for
‘Granny Smith’ (Table 1) and
MDP0000223691 (Storch et al.,
2015), MDP0000095375 (Bowen
et al., 2014), and MDP0000213603
(Perini et al., 2014) for ‘Honeycrisp’
(Table 2). A BLASTn search was
used to find best matching contigs
within respective cultivar-specific
de novo assemblies. Published
primers (Tables 1 and 2) were
checked for perfect binding site

matches or new primers were designed based on the de novo
cultivar-specific sequences as for the candidate genes. All
qPCR primer design followed the parameters in Table 3.
Multiple primer pairs (n = 5) were scanned for binding sites
that overlapped with polymorphisms in each alignment and
tallied. The best qPCR primer pair for each transcript (no
overlap with polymorphisms and closest to optimum parame-
ters) was used to query the respective de novo assembly with
BLASTn to ensure primer specificity. Primer sequences were
synthesized by IDT and prepared as described above (see the
section ‘‘Candidate gene transcript validation’’).

Conventional standard curve analysis to determine primer
efficiency was performed for a subset of candidates (n = 4).
Starting with 1 mg of total RNA, cDNA was synthesized
(including DNase treatment) and a template dilution series of
10–1 (2 ng) to 10–4 (2 pg) was prepared by serial dilution. The
standard curve was prepared based on the Ct value of the
dilution series run and primer efficiency was calculated as
described in Ginzinger (2002) (Supplemental Table 3). Re-
action efficiency based on raw amplification data also were
estimated using the R 3.2.1 (R Core Team, 2017) package
‘‘qpcR’’ (Ritz and Spiess, 2008). The ‘‘Cy0’’ method was used
in the efficiency calculation function (Guescini et al., 2008).
The reaction efficiency estimates were generally concordant
(Supplemental Table 3); therefore, the ‘‘Cy0’’ method was used
to estimate efficiencies for all remaining candidate genes
(Table 4).

For both ‘Granny Smith’ and ‘Honeycrisp’ samples, total
RNA was concentrated in a Concentrator plus/Vacufuge� (AG
5305; Eppendorf, Hamburg, Germany) to a minimum concen-
tration of 125 ng�mL–1. One microgram of total RNA from each
sample was used to synthesize single-strand cDNA using the
iScript gDNA Clear cDNA Synthesis Kit (kit includes a DNase
treatment, catalog no. 1725034; Bio-Rad Laboratories). All
nucleic acid samples were stored at –20 �C. For ‘Granny Smith’
genes, all qPCRs were run on a CFX384 Touch (catalog no.
1855485; Bio-Rad Laboratories) and for ‘Honeycrisp’ on
a CFX96 Real-Time PCR Detection System (catalog no.
1855195; Bio-Rad Laboratories) using SsoAdvanced Universal

Table 3. PCR assay information: A summary of assay parameters used in this study for PCR primer
and qPCR primer design.z

Standard PCR qPCR

Parameter
Product size, bps >80% contig length 75–150 (optimal 100)
Primer length, bps 18–28 18–22 (optimal 20)
Tm, �C 57–63 (optimal 60) 58–62 (optimal 60)
%GC 45–60 (optimal 50) 50–60 (optimal 55)
GC clamp Preferred Preferred
Max poly-X 5 5
Max dimer Tm, �C 40 0
Max Tm difference, �C 2 1

Assay conditions
Denature (initial) 95 �C, 1 min (5 min) 95 �C, 10 s (30 s)
Anneal/elongate Varies with assay 60 �C/30 s
Cycles 35–40 40
Melt curve NA 65–95 �C at 0.5 �C increments

zAll primers were designed in Geneious using the Primer3 plugin.
PCR = polymerase chain reaction; qPCR = quantitative real-time polymerase chain reaction; Tm =
melting temperature; G = guanine; C = cytosine; %GC = percent GC content; GC clamp = presence of
a GC end clamp at the end of designed primer; Max = maximum; NA = not applicable.
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SYBR� Green Supermix (catalog no. 1725270; Bio-Rad
Laboratories). The reaction volume was 10 mL, the template
mass per reaction was 10 pg cDNA, and primer concentrations
were 300 nM (‘Granny Smith’) and 500 nM (‘Honeycrisp’). The
recommended thermal cycling protocol for SsoAdvanced
SYBR Green was used: activation/DNA denaturation at
95 �C for 30 s, denaturation at 95 �C for 10 s, and annealing/
extension at 60 �C for 30 s for 40 cycles. A melt curve analysis
was included: 65 to 95 �C at 0.5-�C increments, 5 s per step.
Samples were run in Bio-Rad plastics (catalog no. HSP-3801)
and sealed with optical adhesive seals (catalog no. MSB-
1001; Bio-Rad Laboratories). All assays included reverse
transcription–negative controls to check for genomic DNA
contamination and no template controls to check for other
contamination. Each reaction was run in technical triplicate.
Reverse transcription–negative controls for each sample were
run on a single plate, as were reactions for all three reference
genes. Template amounts were optimized such that the crossing
point (in the linear phase) was at or before cycle 35 of 40. Only
one assay, GS_02, produced a bad (bimodal) melt curve, and
even though the correlation with our RNA-Seq data was high,
this assay requires further optimization. We followed the
‘‘sample maximization’’ scheme described by Hellemans
et al. (2007), where all samples are run on each plate, with
each plate containing a subset of gene tests obviating the need
for interrun calibrations.

TARGETED VALIDATION WITH RNA-SEQ OF THE 29 CANDIDATE

GENES. As part of ongoing and separate research efforts, we are
generating transcriptome data for apple fruit. To summarize,
total RNA (described previously) was provided to the Penn
State Genomics Core Facility in University Park for library
preparation. Libraries were constructed with 600 ng of total
RNA using TruSeq Stranded mRNA Library Prep kit (catalog
no. RS-122-2103; Illumina) according to the manufacturer’s
instructions. Libraries were sequenced on a 150-bp single-end
protocol to a target volume of $20 million reads per bi-
ological replicate on HiSEq. 2500 in Rapid Mode (Illumina).
Raw reads are available at the NCBI’s SRA (SRA accession
SRP150622).

Illumina read data (150 bp single-end mRNA) were ana-
lyzed with FastQC (Babraham Bioinformatics, 2018) to survey
overall data quality and identify adapter sequences. This was
done iteratively after data trimming and filtering with Trimmo-
matic v0.36 (Bolger et al., 2014) and the following command
shows parameters that were sufficient to trim and filter raw data
to remove adapter sequences and low quality data: - java -jar
trimmomatic.jar phred33 Sample.fastq Sample.trimmed.fastq
ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:5
TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:50. Clean
reads were mapped to the predicted ‘Golden Delicious’ apple
v1.0 gene annotations obtained from Phytozome v12 (Joint
Genome Institute, 2018 - Mdomestica_196_v1.0.transcript.fa,
mean mapping rate 59.5% ± 1.7%) and to the double haploid
‘Golden Delicious’ apple version 1.1 (Bucher Laboratory,
2018; GDDH13_1–1_mrna.fasta, - mean mapping rate 84.2%
± 0.8%). Expression abundance was estimated for both using
the RSEM v1.3.0 (Li and Dewey, 2011) pipeline with the inbuilt
Bowtie2 (Langmead and Salzberg, 2012) read aligner option.
Example commands show parameters: - rsem-prepare-reference--
bowtie2--num-threads 50 Mdomestica_196_v1.0.transcript.fa
Mdomestica & - rsem-calculate-expression --phred33-quals--num-
threads 50 --bowtie2 Sample.trimmed.fastq Mdomestica Sample.

DATA ANALYSIS. The ‘‘sample maximization’’ experimental
set-up for multiplate qPCR studies is a prerequisite for creation
of a ‘‘Gene Study’’ using the CFX Maestro Software (Bio-Rad
Laboratories) in which plate data are combined to evaluate
relative expression across experimental groups for each candi-
date gene. The CFX Maestro Software was used to analyze all
qPCR data (crossing points in linear range) using the Pfaffl
method (Pfaffl 2001) with three reference genes and accounting
for primer efficiencies for each qPCR primer pair considered.
For graph preparation and statistical analysis, R 3.2.1 (R Core
Team, 2017) was used.

Relative normalized expression values (calculated using the
CFX Maestro Software) from qPCR experiments were corre-
lated with normalized digital count data (reads per kilobase of
transcript per million mapped reads) for each triplicated apple
fruit biological sample (n = 4 for both ‘Granny Smith’ and
‘Honeycrisp’). Linear regression analysis of each observation
(four biological samples in triplicate) was performed for each
candidate gene (a = 0.05). If R2 # 0.80, the cultivar-specific
transcript was used to query the annotated genes in Apple V1
and Apple V2 with BLASTn (default parameters) to search for
other high-identity gene matches with better agreement to our
qPCR gene expression estimates. These secondary matches
were analyzed as described previously.

Results

DE NOVO ASSEMBLY OF PUBLICLY AVAILABLE TRANSCRIPTOME

DATA. The first step in our workflow to design efficient qPCR
assays was to de novo assemble publicly available fruit tran-
scriptome data for ‘Granny Smith’ [Gapper et al., 2017 (SRA
experiment SRP100589)] and ‘Honeycrisp’ [Leisso et al., 2016
(SRA experiment SRP081273)]. The ‘Granny Smith’ assembly
of 355 million reads resulted in �68,000 contigs with >9000
contigs over 750 bp in length, and the ‘Honeycrisp’ assembly of
254 million reads resulted in �50,000 contigs with >4500
contigs over 750 bp in length (Supplemental Table 1). As
a quality check, reads were mapped back to the cultivar-specific
assembly (see Honaas et al., 2016); >80% of reads mapped
back, indicating an assembly that was representative of the
input data and therefore high quality (Supplemental Table 1).
The CLC Genomics Workbench de novo transcriptome assem-
blies were used without extensive postprocessing to maximize
recovery of cultivar-specific transcripts (or sufficiently large
fragments thereof) because no contigs would be removed
during any cleanup or refinement steps.

GENE OF INTEREST AND CONTIG SELECTION. Candidate gene
mRNA transcripts for the cultivar ‘Golden Delicious’ were
obtained from GDR by simple sequence retrieval in the case of
‘Granny Smith’ candidates. For ‘Honeycrisp,’ apple ESTs
related to sequences in de Freitas et al. (2010, 2011) were used
to search ‘Golden Delicious’ nucleotide database to retrieve
candidates (see Supplemental File 2 for BLASTn results).
These sequences were then used to query cultivar-specific
transcriptome assemblies with BLASTn (see Supplemental
Files 3 and 4 for BLASTn results). From the multiple hits,
cultivar-specific contigs (putative transcripts or fragments
thereof) were selected, resulting in an initial candidate list of
25 ‘Granny Smith’ genes and 14 ‘Honeycrisp’ genes.

TRANSCRIPT VALIDATION. Contigs that resulted from de novo
assembly are essentially a hypothesis about oligonucleotides
present in the sample from which a library was made. In the
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case of RNA-Seq, these oligonucleotides are typically enriched
for mRNA [selected by hybridization of polyadenylated mature
mRNA transcripts to oligo(dT) probes]; thus, the majority of de
novo assembled contigs are hypothetical mRNA transcripts.
Therefore, to quickly test these hypotheses, conventional PCR
primers were developed for all candidates and tested for
expected amplicon size (see Supplemental File 5 for primer
sequences). A majority of ‘Granny Smith’ candidates (15 of 25)
readily yielded clean amplicons of the expected size (Supple-
mental Fig. 2A). All ‘Honeycrisp’ candidates (n = 14) passed
this validation step with clean and specific PCR tests (Supple-
mental Fig. 2B). This indicates that the de novo contigs were
accurate hypotheses of cultivar-specific transcripts.

INFORMED PRIMER DESIGN: CULTIVAR-SPECIFIC TRANSCRIPTS

ARE POLYMORPHIC. We next examined alignments to ‘Golden
Delicious’ sequences of the 15 validated ‘Granny Smith’
candidates and 14 validated ‘Honeycrisp’ candidates. Com-
pared with Apple V1, the cultivar-specific transcripts (or
fragments thereof) produced global alignments that ranged
from 88.1% to 100% nucleotide identity and for Apple V2
ranged from 79.4% to 100% nucleotide identity (Table 4;
Supplemental File 4). Referencing Apple V1, the overall
average of nucleotide identity was 96.9% ± 3.7% (‘Granny
Smith’ 98.2% ± 2.0%, ‘Honeycrisp’ 94.9% ± 4.7%). For Apple
V2, the average identity was slightly greater at 97.8% ± 4.4%
(‘Granny Smith’ 97.9% ± 3.4%, ‘Honeycrisp’ 97.8% ± 5.3%),
likely due to resolution of ambiguous base calls. Approximately
28% of the candidate genes contained insertions or deletions
compared with the Apple V1 and Apple V2 transcripts,
including a deletion that produced an open reading frame for
a divergent and extended C-terminal poly-peptide for GS_15. A
majority of candidates (82.8% for Apple V1 and 85.7% for
Apple V2) had SNPs (Table 4, Supplemental File 4). SNPs were
observed in potential primer binding sites in 72.0% and 46.6%
of Apple V1 and Apple V2 candidates, respectively (examples
in Fig. 2, Table 4, and Supplemental Fig. 3). Referencing Apple
V1, 65.4%, and Apple V2, 75.0%, of candidate genes had SNPs
that altered predicted protein sequences (Table 4; Supplemental
File 4). The protein identity ranged from 71% to 100% between
contigs and Apple V1 transcripts and between 89.7% to 100%
for Apple V2 (Table 4; Supplemental File 4). For those
candidates lacking ambiguity codes, the amino acid sequence
(thus allowing secondary structure prediction) changes altered
the prediction of secondary protein structure 90% of the time
(Supplemental File 4).

In one ‘Honeycrisp’ example (HC_02), two short contigs
aligned at either end of a single ‘Golden Delicious’ gene
obtained from GenBank with high sequence similarity
(>99%), yet a substantial gap remained in the middle of the
reference transcript (Supplemental Fig. 1). This putative
transcript was validated with conventional PCR, the resulting
amplicon was sequenced, and it was aligned with 99.0%
identity to the NCBI Expressed Sequence Tag cDNA clone
and 100% identity with the GenBank reference apple genome
transcript model (Supplemental File 3). This case demonstrates
that even partial information can be successfully leveraged to
develop primers and probes for cultivar-specific genes of
interest. Also, contigs were manually assembled for HC_05
and HC_14 based on overlapping alignments that were vali-
dated by PCR (Supplemental File 4).

PRIMER BINDING SITES FREQUENTLY CONTAIN POLYMORPHISMS.
Approximately 60% of the putative qPCR primers spanned

polymorphisms between the reference ‘Golden Delicious’
sequence and the cultivar-specific de novo contig (Supplemen-
tal File 4). This is likely an overestimate of polymorphic primer
sites, given the use of one primer pair per gene. However,
because of the nuanced nature of selecting primers and the
frequent practice of evaluating multiple primer pairs, we
reported the frequency of potentially problematic sites. Ambi-
guity codes in reference gene models from Apple V1 masked
superior primer binding sites in �10% of the candidate
transcripts (Supplemental File 4).

AVOIDING PITFALLS IN CROSS-TECHNOLOGY VALIDATION OF

GENE EXPRESSION DATA. Transcriptome data were used to
validate the qPCR results for the biological samples used in
this study. Since cross-platform validation is a critical step for
RNA-Seq experiments, a similar analysis was used for this
cross-cultivar mapping experiment where we mapped Illumina
transcriptome data from ‘Granny Smith’ and ‘Honeycrisp’ to
the ‘Golden Delicious’ genome. A correlation analysis of
relative expression and normalized count data, reads per
kilobase of transcript per million mapped reads, mapping
against Apple V1 and Apple V2 showed that in nearly one-
half of the candidates, the estimates agreed (R2 > 0.8) (Table 4;
Supplemental Fig. 4A and B). For most of the remaining
candidates in this study, lower, but still significant, positive
correlations between RNA-Seq and qPCR were observed
(Table 4; Supplemental Fig. 4A and B).

We hypothesized that the correlation between RNA-Seq and
qPCR could be influenced by sequence similarity between
qPCR targets and RNA-Seq reference sequences. Furthermore,
because draft genome annotations and de novo transcriptome
assemblies were incomplete, reciprocal searching for better
matches to candidates revealed matches that showed improved
agreement between qPCR and RNA-Seq. Apple V1 and Apple
V2 transcripts were searched with BLASTn using cultivar-
specific contigs. Generally, where BLASTn hits showed
a higher sequence identity, the correlation between qPCR and
RNA-Seq improved (Supplemental Fig. 4A and B). The
improvement in agreement ranged from dramatic (Fig. 3A) to
nominal (Fig. 3B). When we filtered out alignments of cultivar-
specific genes that covered less than 75% of the reference
sequences, we observed a positive correlation (R2 = 0.60)
between agreement of qPCR vs. RNA-Seq estimates of gene
expression and alignment identity (Supplemental Fig. 5).
Although concordant with our other analyses, this relationship
may have cultivar-specific characteristics, could be nonlinear,
and will require additional data to fully resolve.

Discussion

OVERVIEW. For our explorations of apple fruit cross-cultivar
gene expression analysis, we ultimately selected 15 ‘Granny
Smith’ and 14 ‘Honeycrisp’ candidate genes for analysis using
qPCR. For ‘Granny Smith’ apple genes, a reverse approach was
employed in which a subset of genes was hand selected from
thousands that were identified ab initio (i.e., expression that was
significantly correlated with superficial scald incidence) from
a transcriptome analysis of ‘Granny Smith’ apple fruit (Gapper
et al., 2017). For ‘Honeycrisp’ apple genes, a forward approach,
beginning with a literature search, led to a short list of genes
implicated in bitter pit (de Freitas et al., 2010, 2011).

The initial ‘Granny Smith’ candidates were reduced from 28 to
15 by our validation criteria. The excluded genes either lacked

J. AMER. SOC. HORT. SCI. 143(5):333–346. 2018. 341



BLASTn search matches in the ‘Granny Smith’ de novo tran-
scriptome assembly (n = 3) or failed to produce clean PCR products
at the conventional PCR validation step (n = 10). All ‘Honeycrisp’
gene candidates passed the validation process, likely due to
previous molecular validation (de Freitas et al., 2010, 2011). Four
‘Honeycrisp’ candidates (identified as four distinct clones in de
Freitas et al., 2010) did not produce sufficiently good alignments
with predicted ‘Golden Delicious’ genes in Apple V1. In addition,
alignments to the NCBI M. ·domestica gene predictions of Apple
V2 genes for those four ‘Honeycrisp’ candidates showed only two
unique matches. The clones are unique, yet the two pairs are highly
similar and may be alleles; the number of ‘Honeycrisp’ genes

remains unclear. The final 29 candidate genes (Tables 1, 2, and 4;
Supplemental Files 1 and 5) were subject to our full analysis that
resulted in successful qPCR assay development for 28 candidate
genes, a success rate exceeding 95%.The sole assay,which requires
further optimization, produced a bimodal melt curve (GS_02),
perhaps due to cryptic alleles present in the qPCR amplicon.

SECOND-GENERATION SEQUENCING DATA CAN BE LEVERAGED

FOR GENE DISCOVERY. Gene discovery in apple was stimulated
with the release of the apple genome (Daccord et al., 2017;
Velasco et al., 2010). However, substantial genetic diversity
among apple cultivars likely presents a hurdle to gene expression
analysis via loss of signal fidelity due to cryptic polymorphisms.

Fig. 2. Cultivar-specific genes are polymorphic compared with ‘Golden Delicious’ reference genes. An alignment showing single-nucleotide polymorphisms
(colored letters) between a ‘Granny Smith’ de novo transcriptome assembly contig (GS.contig, GS_06) and the ‘GoldenDelicious’ predictedmRNA (GD.mRNA,
MDP0000275383). Polymorphisms, especially those occurring in primer binding sites, are potentially problematic for gene expression measurements.

Fig. 3. Agreement between quantitative real-time polymerase chain reaction (qPCR) and RNA sequencing (RNA-Seq) is variable but can be improved in some cases
(for all regressions of all candidate genes, see Supplemental Fig. 4). The change in agreement (Pearson’s R2 correlation between qPCR relative expression and
RNA-seq normalized expression (reads per kilobase of transcript, per million mapped reads) between the two technologies ranged from dramatic (A) to minimal
(B) when higher identity matches were found by additional and reciprocal searches of reference sequences for better matches. In (A), the identity increased by
10.3% (in the BestHit alignment) between matches for GS_10, resulting in a much better R2. In (B), the identity increased by 14.9% (in the BestHit alignment)
between matches for HC_13 with virtually no change in R2. Biological samples in 3A represent a time–course experiment of ‘Granny smith’ apple fruit: T0 = at
harvest; T1 = 1week of storage in 1 �C air; T2 = 2weeks of storage in 1 �C air; T3 = 1week of storage in 1 �C air and then 1 week of storage at ambient temperature
in air. Biological samples in 3B represent ‘Honeycrisp’ tissue taken after 6 months of 1 �C in air: S1 = symptomatic cortical tissue; S2 = symptomatic peel tissue;
A1 = asymptomatic cortical tissue; A2 = asymptomatic peel tissue.
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Indeed, genomic surveys of apple during the development of
a genotyping array showed more than 15 million variants
detected across 63 apple cultivars. However, only 3.2% are
represented in the final array (Bianco et al., 2016). A majority of
gene candidates in this study (selected for their potential in-
volvement in economically relevant disorders of apple fruit) are
sufficiently divergent in coding sequences to impede targeted
gene expression analysis (Lefever et al., 2013; Wu et al., 2009).
We resolved these differences by gene discovery in cultivars of
interest using publicly available transcriptome data. Transcrip-
tome assembly is a more efficient approach to explore gene space
(i.e., discover gene sequences) compared with genome assembly
(De Wit et al., 2012), and in our case easily afforded by publicly
available data (Gapper et al., 2017; Leisso et al., 2016). Using
a proven de novo transcriptome assembly tool, CLC Geno-
mics Workbench, accurate cultivar-specific gene models were
developed. Thus, a workflow for enhanced targeted gene
expression analysis was built around the new reference tran-
scriptomes (Fig. 1).

UPFRONT INFORMATICS AVOIDS PITFALLS OF CRYPTIC

POLYMORPHISMS. SNPs have been shown to have dramatic
effects on qPCR experiments, with four mismatches able to
completely block amplification (Lefever et al., 2013). Fewer
than four mismatches can be tolerated, although less so when
mismatches occur nearer to the 3# end of the primer. Just one
SNP at a primer binding site can cause clear and significant
effects on gene expression measurements (Lefever et al., 2013).
To avoid these potential pitfalls, transcriptomes were assem-
bled de novo to discover cultivar-specific versions of apple
genes of interest. De novo transcriptomes were previously
shown to be highly accurate with regard to base-call errors
(Honaas et al., 2016). Therefore, we reasoned that de novo
assembled ‘Granny Smith’ and ‘Honeycrisp’ transcripts would
be excellent targets for high accuracy qPCR assay design. Here,
we report that previously unknown transcript polymorphisms in
‘Granny Smith’ and ‘Honeycrisp’ compared with ‘Golden
Delicious’ apple, occur in candidate primer binding sites. In
this study, qPCR assays showed high specificity and high
efficiency often with good agreement to RNA-Seq estimates
of the same genes. Potential assay failures/problems due to
cryptic polymorphisms were avoided by leveraging freely
available public data.

CULTIVAR-SPECIFIC GENE DISCOVERY REVEALS ALTERED

PROTEIN SEQUENCES. Polymorphisms in cultivar-specific genes
were discovered that result in alterations of encoded proteins.
SNPs that are silent and do not specify a different protein
sequence are still equally problematic for primer design.
Furthermore, protein sequence changes have the potential to
alter biological activity of the protein. In addition to learning
about nucleotide sequences to inform primer design, the
biological significance of candidate genes can be enhanced
by learning about the alterations in encoded proteins. In
approximately two-thirds of cases, the cultivar-specific genetic
differences resulted in altered protein-coding sequences. Al-
though is it purely speculative to assume some biologically
relevant change in these cases, it does provide additional
information that will guide future experiments and interpreta-
tions thereof. Importantly, this information would remain
cryptic without the gene discovery afforded by de novo
assembly.

RNA-SEQ VALIDATION. It is common practice to validate
RNA-Seq data with qPCR data. Several studies report com-

parisons between RNA-Seq and qPCR that found highly
significant, positive correlations between the two methods in
a diverse set of experiments (Asmann et al., 2009; Griffith et al.,
2010; Gusberti et al., 2013; Wu et al., 2014; Xu et al., 2017).
This cross-platform check is a critical step because two
concordant estimates of gene expression from fundamentally
different technologies is robust validation. Here, we validated
our gene expression estimates because we had available
RNA-Seq data to examine correlations in cross-cultivar
RNA-Seq experiments for our candidates.

Initially, several candidates showed poor correlations be-
tween cultivar-specific qPCR assays and cross-cultivar RNA-
Seq. Because the qPCR assays were highly specific (with clean
melt curves and no off-target primer sites detected in the de
novo assembly) and highly efficient (mean efficiency 100.8 ±
6.3), we suspected that the poor correlations were due to issues
with the RNA-Seq analysis rather than the qPCR assay, likely
due to high genetic diversity among apple cultivars (Bianco
et al., 2016). By searching for reciprocal best hits, better gene
matches were often found in the ‘Golden Delicious’ genome
(Table 4; Supplemental Fig. 4A and B). Although we frequently
found better matches, the higher identity matches did not
always result in proportional increases in correlation coeffi-
cients (for example, see Fig. 3A vs. Fig. 3B). The presence of
suboptimal matches is likely due to an incomplete annotation of
the ‘Golden Delicious’ genome, genome mis-assembly (e.g.,
missing genes), transcriptome mis-assembly, or a combination
thereof. Each of these could result in inferior matches when
searching the de novo transcriptome assembly with predicted
‘Golden Delicious’ genes and vice versa. That closely related
genes were often found in our analysis illustrates a key issue of
large, complex gene families (that contain many highly similar
members) in duplicated plant genomes (Jiao et al., 2011);
this problem is confounded by high heterozygosity in apple
(Daccord et al., 2017).

It is unclear why, in general, agreement between RNA-Seq
and qPCR for the ‘Granny Smith’ candidates was better than for
the ‘Honeycrisp’ candidates. It has been shown that even in
isogenic comparisons, individual gene characteristics (e.g.,
gene length and expression level) can influence agreement
between the technologies (Everaert et al., 2017). Thus, the
difference in our study may arise from an issue of sampling
effort and may require a much larger or even global-scale
analysis to fully resolve. The different gene selection methods
for each cultivar may also help explain the difference. Our
‘Granny Smith’ candidates were selected from a list of genes
included in an RNA-Seq analysis, thus weeding out problem-
atic loci—a step to which the ‘Honeycrisp’ candidates were
not subjected. Parsing out which differences arise from
genetic distinctness vs. other gene characteristics and how
these interact with each technology will require additional
work.

From a practical standpoint, our workflow provides an easy
step to improve the agreement between RNA-seq and qPCR for
a set of validation genes. Typically, validation genes are either
chosen at random or represent a small set of genes of interest.
qPCR is used to verify that, generally, the estimates of gene
expression are concordant between the two technologies. This
ranges from excellent correlations of R2 > 0.9 for genes of
interest (Honaas et al., 2016; Zermiani et al., 2015) to non-
mathematical visualization meant to show concordance
(Busatto et al., 2018). Here, we show that disagreement may
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simply result from misidentification of the corresponding
homologous gene, but we note that it is also variable from
gene to gene.

Beginning a study with a gene discovery step like that
described here will promote efficient and accurate qPCR
assay design for genes of interest. For example, instead of
choosing just 20 genes randomly for validation, we suggest
selecting greater than 20, then screening them for the highest
identity matches in a de novo transcriptome for the cultivar
of interest. Primers could then be designed for the best (i.e.,
highest identity) RNA-Seq validation candidates, thus pro-
viding data with fewer artifacts resulting from cross-cultivar
polymorphisms. If genes have already been chosen and
qPCRs have already been run, reciprocal searches between
de novo transcriptomes and reference genomes may yield
matches in the genome with improved agreement to the
existing qPCR data.

CONSIDERATIONS FOR DATA USAGE AND SOFTWARE SELECTION.
In the present study, we used free data and closed-source
software to develop our workflow. However, if free and suitable
transcriptome data for a cultivar of interest is not available,
there are affordable options to generate sufficient data for
robust gene discovery. We previously reported that a data set of
roughly 4 Gbp (�25 million 76 · 76 bp reads) was sufficient to
reconstruct a majority of detected transcripts (Honaas et al.,
2016) from a single tissue sample. The cost to generate such
a transcriptome data set is easily on the order of the cost to
develop qPCR primers for just a handful of candidates
and should therefore be considered when no public data are
available.

The workflow presented here does not rely on functionality
unique to the closed-source software used in this study (CLC
Genomics Work Bench and Geneious). The data retrieval and
validation application SRA Toolkit from NCBI is open-source.
Trinity (Grabherr et al., 2011) is an excellent open-source
de novo assembler, and Honaas et al. (2016) have previ-
ously shown it to be among the top de novo transcriptome
assemblers along with CLC Genomics Workbench and
SOAPdenovo-Trans (also open-source; Beijing Genomics In-
stitute, 2013). BLASTn, Primer3 (Untergasser et al., 2012),
R, and the package we used for determining primer efficiency,
‘‘qpcR’’ (Ritz and Spiess 2008), are all open-source and freely
available. An open source alternative for sequence alignments
is MEGA (Kumar et al., 2016).

Conclusion

As genomes and transcriptomes become available for more
specialty crops, opportunities to use these resources emerge. In
this study, as a test group we focused on genes potentially
involved in physiological disorders of apple fruit: superficial
scald in ‘Granny Smith’ and bitter pit in ‘Honeycrisp’. To
develop predictive and diagnostic tests for these disorders,
knowledge of molecular mechanisms underlying superficial
scald and bitter pit development are essential. This knowledge
relies on high-fidelity measurements of gene activity as well as
high-confidence RNA-Seq validation tests. We aimed to
enhance gene expression analysis, and to that end, we have
shown that transcriptome data can be leveraged before assay
development to avoid pitfalls, enhance efficiency, and learn
about genes of interest in genetically distinct apple cultivars, as
well as improve RNA-Seq validation with qPCR.
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