2005 VARIETY TESTING WASHINGTON STATE UNIVERSITY LAMONT SPRING BARLEY

	5 YEAR	3 YEAR	2 YEAR	2005	2005
VARIETY NAME	AVERAGE			YIELD	TEST WT.
VARIETT NAME	(LB/A)	(LB/A)	(LB/A)	(LB/A)	(LBS/BU)
	(LD/A)	(LDIA)	(LD/A)	(LD/A)	(LD3/D0)
BARONESSE	3381 (1)	3765 (1)	4423 (1)	5959 (2)	51.6
RADIANT	3302 (2)	3617 (2)	4386 (2)	6206 (1)	52.0
BOB	3105 (3)	3476 (3)	4056 (5)	5847 (3)	52.3
XENA	3048 (4)	3228 (6)	3797 (8)	5274 (10)	
CAMAS	2984 (5)	3160 (9)	3800 (7)	5560 (5)	52.3
FARMINGTON	2860 (6)	3190 (8)	3670 (11)	4950 (24)	51.8
HARRINGTON	2683 (7)	2779 (12)	3372 (15)	4430 (34)	51.0
MOREX	2024 (8)	2216 (15)	2554 (24)	3526 (40)	50.9
CEBECO 0149		3462 (4)	4114 (3)	5790 (4)	51.2
WA 8569-99		3277 (5)	3779 (10)	5458 (7)	51.7
WA 10701-99		3200 (7)	3797 (9)	5223 (13)	51.4
BOULDER		2906 (10)	3560 (14)	4625 (30)	52.4
AC METCALFE		2805 (11)	3251 (16)	4884 (25)	51.1
01NZ706		2670 (13)	3219 (19)	4710 (29)	49.0
LEGACY		2667 (14)	3093 (21)	3920 (37)	49.7
CREEL		2183 (16)	2737 (22)	3840 (39)	48.7
YU-501-385			4109 (4)	5343 (9)	53.3
WA 15279-00			3885 (6)	5072 (18)	50.8
WA 10429-00			3637 (12)	4778 (27)	50.5
WA 7330-00			3585 (13)	5062 (19)	51.7
01NZ338			3250 (17)	5028 (21)	48.2
01NZ392			3224 (18)	4564 (31)	49.5
01NZ111			3098 (20)	4289 (35)	53.4
TRADITION			2693 (23)	3884 (38)	50.2
02WNZ1095			′	5536 (6)	51.3
BURTON				5377 (8)	51.3
01WA13825.22				5261 (11)	51.9
02WNZ1990				5234 (12)	51.4
02WNZ1023				5215 (14)	50.9
02WNZ1826				5169 (15)	50.8
02WNZ1100				5143 (16)	51.9
02WNZ1551				5094 (17)	51.7
2001NZ078				5030 (20)	50.0
02WNZ1015				5003 (22)	52.1
02WNZ1874				4995 (23)	52.2
GMG SPAULDING				4862 (26)	52.7
02WNZ1821				4772 (28)	51.2
00WNZ154				4562 (32)	50.4
02WNZ1719				4518 (33)	50.0
2001NZ384				4182 (36)	49.3
Moon	2923	2027	2545	40E 4	51.1
Mean CV%		3037	3545	4954 13.3	
LSD @ .10	9.9 175	14.0	14.8	894	1.2
L3D @ .10	175	333	503	094	0.9

LAMONT SPRING BARLEY - 2005 WSU VARIETY TESTING DATA

- 1. 2005 Spring Barley data from the WSU Variety Testing nursery at the Lamont location averaged 4954 lbs/acre that was 95% higher than the previous 3-year average of 2533 lbs/acre. Just like spring wheat at this location, this nursery was planted on summer fallow which undoubtedly contributed to higher average yields, especially considering the 2005 growing conditions. In previous years, the nursery generally followed winter wheat. TEST WEIGHT values were also very good in this nursery again, grown on summer fallow conditions.
- 2. Yield rankings typically followed 3-year historical trends at this location with Baronesse and new varieties with Baronesse parentage having the highest average yields. 6-row spring barley varieties appeared to suffer most from the 2005 growing conditions. Much of this may have been a result of the tendency for 6-row barley varieties to have develop fewer tillers and have taller growth habits that may not have been as favorable for yields in 2005.
- 3. It is worth noting that the majority of varieties/experimental lines in this nursery had yields that were fairly close to each other and from a statistical standpoint were not statistically different. The

historical 3-year average data set probably best represents spring barley performance at this location.